

Ministero dell'Università e della Ricerca

The two-faced plant viruses: from plant pathogen to smart nanoparticles

Chiara Lico Biotechnologies Laboratory

November 28, 2023 Training course SUS-MIRRI.IT

Obligate intracellular parasite

Infectious agent capable of replicating exclusively within a cell (animal, vegetable, bacterial) in a highly host-specific manner

- 1- Cell entry, disassembly, viral genome release.
- 2- Viral genome translation to immediately produce viral proteins involved in replication.
- 3- Subgenomic RNAs production (if requested).
- 4- Production of proteins involved in movement and assembly.
- 5- Virion assembly.
- 6- Virion movement and systemic infection spreading.

Viral genome organization

• Uses

1- Few ORF coding for multifunctional proteins

- "cross-protection" or "mild strain protection" systems

2- Adoption of several strategies to produce different polyproteins, as leaky stop codons, frameshift....

3- Subgenomic RNAs

- Viral vectors for heterologous proteins expression or epitope presentation

-Vectors for host gene silencing and functional genomics analysis

- Nanotechnology

Plant viruses as expression vectors

a) Full virus inoculum and spread throughout the plant

b) Agroinfiltration strategy scheme.

Missione 4 • Istruzione e Ricerca

Plant viruses for biopharmaceuticals production

Missione 4 • Istruzione e Ricerca

Bioreactors

Istruzione e Ricerca

Plant Molecular Farming

Missione 4 • Istruzione e Ricerca

Table 1. Comparison of production and effective cost for three countries and two presentations

	Korea or						
	India	United States		Korea		India	
		Plant-	Plant-	Plant-	Plant-	Plant-	Plant-
	Yeast de-	derived	derived 10-	derived	derived 10-	derived	derived 10-
	rived 10-	single dose	dose	single dose	dose	single dose	dose
	dose vials	packet	packet	packet	packet	packet	packet
Cost	\$0.27	\$0.15	\$0.06	\$0.09	\$0.04	\$0.075	\$0.03
Effective Cost	\$0.42	\$0.16	\$0.08	\$0.10	\$0.05	\$0.08	\$0.04
% savings for plant de- rived vaccine against yeast		62%	81%	76%	88%	81%	90%
derived for ef- fective cost							

Arntzen C, R Mahoney, A Elliott, B Holtz, A Krattiger, CK Lee, S Slater. 2006. Plant-derived Vaccines: Cost of Production. The Biodesign Institute, Arizona State University: Tempe. <u>www.biodesign.asu.edu/centers/idv/projects/provacs</u>

Vertical farming

2009

ۍ

May

Agrobacterium

inoculation with selected strains

culture

Vaccines **Biomedicine** Diagnosis Immunotherapy Imaging Gene therapy **Drug delivery** - CEREBRA 2222022222222222222222 Enzyme nanocarriers Thermal therapy Nanoreactors Tissue engineering Energy storage **Pest Control** Photovoltaic Plasmonic Agriculture metamaterials **Biosensors Nanomaterials**

Plant viruses in nanotechnology

Missione 4 • Istruzione e Ricerca

- Very different in shape and dimension
- Easy, safe, rapid production in plants
- Self-assembly
- High surface/volume ratio
- Modification of the surface
- Modification of the inner
- Genetic engineering
- Bioconjugation
- Standard chemistries

PVX in Biotechnology @ ENEA

PVX mutant

Plant virology CVPs stability Virus movement CP-Virion structure

Antimicrobial peptides

nature chemical biology

	AR	ΤI	C	L	
://doi.org/10.10)38/s41	589-	020-	05()2

Check for updates

Atomic structure of potato virus X, the prototype of the *Alphaflexiviridae* family

Alessandro Grinzato[©]¹, Eaazhisai Kandiah², Chiara Lico[©]³, Camilla Betti[©]^{3,4}, Selene Baschieri[©]³ and Giuseppe Zanotti[©]¹²²

New Vaccine Formulations

Diagnostic kit for Sjogren's Syndrome

Lipocalin is the major lipid binding protein in human tear fluid

Lipo peptide is recognized by autoantibodies present in patients sera

Fusion of Lipo peptide to PVX CP

How does it work?

Does it work ?

Easy, rapid, not invasive \rightarrow ELISA test

Reliable, sensible, specific, stable for at least 60 days \rightarrow lipocalin peptide, PVX

Cheap \rightarrow in planta production

AVIan viral disease prevention and control with plant vaccines for the MEDiterranean area (AVIAMED)

DIVA test

(Differentiating Infected from Vaccinated Animals)

Plant Viruses @ ENEA

Prof. Luca Santi

Biodistribution Evaluation

The NANOCROSS project

Plant virus nanoparticles for blood-brain barrier crossing and medulloblastoma targeting

Medulloblastoma is a brain tumor affecting mainly young children, with the highest risk of unfavorable outcome and/or severe and life-long side effects for the aggressive nature of currently used therapy (surgery/radiotherapy/chemiotherapy)

In vivo therapeutic efficacy

Enzyme nanocarriers (ENCs)

Coiled-coil interaction Prof. Heribert Warzecha

Viruses as nanomaterials

- Tissue Egineering
- Nucleation cages, mineralization, crystals production
- Liquid crystals systems
- Biosensors

Than you for your attention

Chiara Lico

chiara.lico@enea.it

https://bioag.sspt.enea.it/