

PIPELINES FORNGS DATA

27/11/2023 Dr. Andrea Visca

NGS technologies

Next-generation sequencing (NGS) is a massively parallel sequencing technology that offers ultra-high throughput, scalability, and speed. The technology is used to determine the order of nucleotides in entire genomes or targeted regions of DNA or RNA.

Workflow of a sequencing: Illumina and Nanopore

Illumina

Sequencing output

@M04743:199:000000000-CGG4F:1:1101:16145:1655 1:N:0:233

GGTGCCAGCCGCCGCGGTAATACGAAGGTGGCAAGCGTTGTTCGGATTCACTGGGCGTACAGGGAGCGTAGGCGGTTGGGTAAGCCCTCCGTGAAATCTCCGGG

GGTGCCAGCCGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCTGTTTTGTAAGTCAGATGTGAAATCCCCGAG

@M04743:199:000000000-CGG4F:1:1101:14830:1795 1:N:0:233

ĞĞTĞCCAĞCCĞCCĞCGĞTAATACĞTAĞGTĞĞCAAĞCĞTTĞTCCĞĞATTTATTĞĞĞTTTAAAĞĞGTĞCĞTAĞĞCĞĞTTCTTTAAĞTCAĞTĞĞTĞAAATACAĞCCĞ

ABBABFBFB?AAEE?EGEFCGGHHFFHGEHFFHHGHGGGCFHHGEEGGDFGDHHHGGGFGDGHGGFEGFGGDFGGGGGGHHFFFBGFH34FGBFFHGHHHGHFFC(9BD?99-9/90-BD.;ADFFBF///BBF:FFFFFED?DFDFF?A.

@M04743:199:000000000-CGG4F:1:1101:14968:1984 1:N:0:233

AGTGCCAGCCGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGTTCTTTAAGTCAGTGGTGAAATACAGCCG

ŤĠŦĠĊĊĂĠĊĊĠĊĊĠĊĠĠŦĂĂŦĂĊĠĠĂĠĠĠĠĠĊŦĂĠĊĠŦŦĠŦĊĊĠĠĂĂŦŦĂĊŤĠĠĠĊĠŦĂĂĂĠĊĊĠĊĊĠŦĊŦŦĠĊĊĠĠŦŦŦŦŦŦĂĂĠŦĊĂĠĂĠĠĊĠĠĂŎŔŎĊĊĠĠĠĠ

@M04743:199:00000000-CGG4F:1:1101:13747:2260 1:N:0:233

CGTGCCAGCCGCCGCGGTAATACGAAGGGGGCTAGCGTTGTTCGGAATTACTGGGCGTAAAGAGTTCGTAGGCGGTTTGTCGCGTCGTTTGTGAAAACCCGGGG

@M04743:199:000000000-CGG4F:1:1101:20151:2263 1:N:0:233

TGTGCCAGCCGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCTGTTTTGTAAGTCAGATGTGAAATCCCCGAG

GGTGCCAGCCGCCGCGGTAATACGGAGGGGGCTAGCGTTGTTCGGAATTACTGGGCGTAAAGCGCACGTAGGCGGATCGGAAAGTCAGAGGTGAAATCCCAGGG

FastQ file

FASTQ format is a text-based format for storing both a biological sequence (usually nucleotide sequence) and its corresponding quality scores. Both the sequence letter and quality score are each encoded with a single ASCII character for brevity.

	Header	Sequence	Quality
@HWI-ST227:389:	C4WA2AC	xx:7:1204	4:2272:59979
GGAGGAAGGTCCTCG	CTCCTCT	TTCATATA	AGGGAAATGGCTGAAT
+			
FFFFHHHHHHJIJJJ	JJJJJJIJ	JJIGIGIG	JIJIJIJJJJJIII
@HWI-ST227:389:	C4WA2AC	XX:7:1205	5:15214:42893
GAGGATCCCAGGGAG	GAAGGTC	CTCGCTCC	FCTTTCATCTAAGGGA
+			
12BAFB?A:3 <ae1@< td=""><th><ff;1*@< th=""><td>EG*)?0?DB</td><td>3D>9BF9B*?######</td></ff;1*@<></th></ae1@<>	<ff;1*@< th=""><td>EG*)?0?DB</td><td>3D>9BF9B*?######</td></ff;1*@<>	EG*)?0?DB	3D>9BF9B*?######
@HWI-ST227:389:	C4WA2AC	XX:8:2208	3:2467:44624
AAAGAGGAGAGAGAGA	CCATCCT	CCCTGGGAT	ICCTCAGAAGTCTACT
+			
BDDA:DB?2AA@FC>	F?EEGC<	FED>GFD;3	GBB? F99*/9?9??</td

cBio	and S	anger				
II	Q	P_error	ASCII	Q	P_error	ASCII
·, · · ·	22	0.00631	55 7	33	0.00050	66 B
-	23	0.00501	56 8	34	0.00040	67 C
1000	24	0.00398	57 9	35	0.00032	68 D
1	25	0.00316	58 :	36	0.00025	69 E
0	26	0.00251	59 ;	37	0.00020	70 F
1	27	0.00200	60 <	38	0.00016	71 G
2	28	0 00158	61 =	39	0.00013	72 H
3	29	0.00126	62 >	40	0.00010	73 I
4	30	0.00100	63 ?	41	0.00008	74 J
5	31	0.00079	64 @	42	0.00006	75 K
6	32	0.00063	65 A			

II	Q	P_error	ASCII	Q	P_error	ASCII
K	22	0.00631	86 V	33	0.00050	97 a
L	23	0.00501	87 W	34	0.00040	98 b
М	24	0.00398	88 X	35	0.00032	99 c
N	25	0.00316	89 Y	36	0.00025	100 d
0	26	0.00251	90 Z	37	0.00020	101 e
P	27	0.00200	91 [38	0.00016	102 f
Q	28	0.00158	92 \	39	0.00013	103 g
R	29	0.00126	93]	40	0.00010	104 h
S	30	0.00100	94 ^	41	0.00008	105 i
Т	31	0.00079	95	42	0.00006	106 j
υ	32	0.00063	96 🔨			

How to classify?

The taxonomy classification of the sequenced reads is made by aligning the DNA reads with a database of know sequences

In this way I aligned one sequence.. But with NGS I usually have **10-100 x 10⁶** sequences! The sequences in the fastQ are not all the same, I have to **consider the quality** of the sequencing!

We need to use **dedicated** (bio)informatic tools

Filtering and trimming

The quality check might have shown the number of reads that have low quality scores. These reads will probably not align very well because of the potential mistakes in base calling, or they may align to wrong places in the genome.

OTU vs ASV clustering

OTU Clusters are generated using a similarity threshold of 97% sequence identity. This approach carries with it the risk that multiple similar species can be grouped into a single OTU, with their individual identifications being lost to the abstract of a cluster.

Operational Taxonomic Unit

Output: 4 OTUs

OTU calling is based on similarity and can overlook small biological variations by grouping sequences together.

Amplicon Sequence Variant

Output: 5 ASVs ASVs can preserve biological sequence variation in output reads.

The ASV approach determine which exact sequences were read and how many times each exact sequence was read. These data will be combined with an error model for the sequencing run, enabling the comparison of similar reads to **determine the probability that a given read at a given frequency is not due to sequencer error**.

How does it works? *These steps are not suitable for* Usearch Nanopore reads! Amplicon Sequencing. Exactly Read preparation 1. Filter and trim: filterAndTrim() Assemble paired reads, quality filter, trim lengths, find unique sequences Dereplicate: derepFastq() Learn error rates: learnErrors() OTU clustering / denoising 4 Infer sample composition: dada() Select OTU sequences The use of these tools Construct OTU table nceTable() Map reads to OTUs to get counts per sample require a good Denovo() BAS Quality control knownledge of Check OTU sequences and analyze control samples programming languages Diversity and taxonomy analysis learnErrors(filtFs, nbases = 1e8, multithread = TRUE, randomize = learnErrors(filtRs, nbases = 1e8, multithread = TRUE, randomize = TRUE Calculate alpha and beta diversity from OTU table Predict taxonomy for OTU sequences errF_plot <- plotErrors(errF, nominalQ = TRUE) errR_plot <- plotErrors(errR, nominalQ = TRUE)</pre> saveRDS(errF_plot, paste0(filtpathF, "/errF_plot.rds")) saveRDS(errR_plot, paste0(filtpathR, "/errR_plot.rds")) #!/bin/bash ggsave(plot = errF_plot, filename = paste0(filtpathF, "/errF_plot.png"), Diversity width = 10, height = 10, dpi = "retina") qqsave(plot = errR_plot, filename = paste0(filtpathR, "/errR_plot.png"), # Ouality filter width = 10, height = 10, dpi = "retina") \$usearch -fastq filter ex min reads.fq -fastq maxee 1.0 \ and -relabel Filt -fastaout filtered.fa mergers <- vector("list", length(sample.names))</pre> names(mergers) <- sample.names</pre> phyloseq ddF <- vector("list", length(sample.names))</pre> taxonomy # Find unique read sequences and abundances names(ddF) <- sample.names \$usearch -fastx uniques filtered.fa -sizeout -relabel Uniq -fastaout uniques.fa ddR <- vector("list", length(sample.names))</pre> names(ddR) <- sample.names analysis # Make 97% OTUs and filter chimeras # For each sample, get a list of merged and denoised sequences \$usearch -cluster otus uniques.fa -otus otus.fa -relabel Otu for(sam in sample.names)

Missione 4 • Istruzione e Ricerca

replicate forward rea

User «friendly» bioinformatic tools

mothur is an open-source software package for
 bioinformatics data processing and it is capable of processing data generated from several DNA sequencing methods including 454 pyrosequencing,
 Illumina HiSeq and MiSeq, Sanger, PacBio, and IonTorrent. The first release of mothur occurred in

EPI2ME Labs is a bioinformatics notebook environment and will work with sequence data from Flongle, MinION, GridION and PromethION.

Custom pipeline: how to?

What is a mock community?

Mock community: A defined mixture of microbial cells and/or viruses or nucleic acid molecules created *in vitro* to simulate the composition of a microbiome sample or the nucleic acid isolated therefrom.

Genus simulated dataset (12 genera): Aspergillus, Bacillus, Bacteroides, Candida, Clostridium, Penicillium, Pseudomonas, Saccharomyces, Sphingomonas, Streptomyces, Trichosporon, Xanthomonas.

In silico mock: simulating Nanopore sequencing with DeepSimulator

The best alignment generates the

Wooey: the tool to be validated ^[1]

Wooey aligns (using blast algorithm) the reads against the database that is provided.

Asperaillus 19625766-3fe4-4e5a-b15e-b6e

Correct	ion stan (ontional): all reads as	re aligned vs	taxon	omy assign	iment to	o the ex	amined		
all read	TS orignalConsesus	nce is	read.						
genera ^N conser	lone				/		Alignme scores a	ents are and e-va	ranked by lues .
alignm		he	Callad						•
datase	Settings Required Options		Called	species					Score
	Barcode								
	barcode to analyse								
b6e59(1 843	Aspergillus	laciniosus	97.222	0.0	388753	503	
b6e59(Folder Fastq	843	Aspergillus	spinosus	97.222	0.0	36631	503	
b6e59(folder where fasta file are located	843	Aspergillus	novofumigat	us	97.222	0.0	340412	503
b6e59(folder where laste nie are located			akii	97.222	0.0	2079208	503	
b6e59(Email	lt is	very user	iniosus	97.222	0.0	388753	503	
b6e59(c c	·	ofumigat	us	97.222	0.0	340412	503
b6e59(email for blast search	IT I	riendly!	cheri	97.222	0.0	36630	503	
b6e59(-	tulus	97.030	0.0	293939	503	
b6e590		1 839	Aspergillus	lentulus	97.030	0.0	293939	503	
b6e59(1 839	Aspergillus	lentulus	97.030	0.0	293939	503	
b6e59(Metadata	839	fungal sp. /	AM0077	97.030	0.0	1578594	503	
b6e590		839	Aspergillus	spinosus	97.030	0.0	36631	503	
b6e59(Job Name	839	Aspergillus	lentulus	97.030	0.0	293939	503	
b6e59(Job Name	839	Aspergillus	lentulus	97.030	0.0	293939	503	
b6e59(839	Aspergillus	fischeri	97.030	0.0	36630	503	
b6e59(Job Description	839	Aspergillus	spinosus	97.030	0.0	36631	503	
b6e59(Enter job description here	839	Aspergillus	lentulus	97.030	0.0	293939	503	
b6e59(Enter job description nore	839	Aspergillus	sp. 97.030	0.0	5065	503		
b6e59(839	Aspergillus	fumisynnema	itus	97.030	0.0	286432	503
b6e59(839	Aspergillus	lentulus	97.030	0.0	293939	503	Tall Bases The
b6e59(839	Aspergillus	botucatensi	s	97.030	0.0	1907480	503
b6e59(839	Aspergillus	fischeri	97.030	0.0	36630	503	
b6e59(837	Aspergillus	spinosus	97.024	0.0	36631	503	
h6e590	33449drr emblHE5786	159.11 833	Aspernillus	fuminatiaff	inis	96.832	0.0	340414	503

Validation of the tool *in silico:* comparison with already validate tools

In silico software performance at genus level

Kraken2 (<u>https://github.com/DerrickWood/kraken2</u>) (*Least Common Ancestor: LCA*): while Kraken 1 used a sorted list of *k*-mer/LCA pairs indexed by minimizers, Kraken 2 introduces a probabilistic, compact hash table to map minimizers to LCAs.

CCMetagen

(<u>https://github.com/vrmarcelino/CCMetagen</u>): processes sequence alignments produced with KMA (k-mer alignment), which implements the ConClave sorting scheme to achieve highly accurate read mappings.

Emu (<u>https://gitlab.com/treangenlab/emu</u>): is a homology-aware alignment likelihood approach in which read classification probabilities are adaptively updated based on read alignments to multiple reference sequences and the current community profile estimate.

Validation of the tool in silico

- Precision: True Positive / (True Positive + False Positive)
- Recall: True Positive / (True Positive + False Negative)
- F-score: (2 x precision x recall) / (precision + recall)

In silico dataset with 120,000 reads

Software	N. of reads aligned	Precision	Recall	F- score	True Positive	False Positive	False Negative
Wooey_genus	116,994	1.00	0.93	0.97	109,281	99	7,614
Emu_genus	22,609	0.99	0.92	0.96	20,662	158	1,788
Wooey_species	119,718	1.00	0.56	0.72	66,882	0	52,836
Emu_species	10,948	1.00	0.21	0.35	2,337	0	8,610
					1		

Wooey software has better F-score than Emu, especially at species level and Wooey classify more reads than Emu, which is more conservative.

In vitro mock construction and validation

Eukaryotic mock: DNA has been first amplified with ITS1 (Fw) ITS4 (Rv) primers for each species, then mixed together to have the same concentration in the mock.

Mock species	Emu	Wooey
Aspergillus clavatus	Aspergillus clavatus	Aspergillus clavatus
Aspergillus flavus	Aspergillus flavus	Aspergillus flavus
Aspergillus glaucus	Aspergillus	Aspergillus
Trametes versicolor	Trametes versicolor	Trametes versicolor
Fusarium graminearum	Fusarium	Fusarium
Pleurotus eryngii var. ferulae	Pleurotus eryngii	Pleurotus eryngii var. ferulae
Pleurotus eryngii var. elaeoselini	Pleurotus eryngii	Pleurotus eryngii
Fusarium oxysporum	Fusarium oxysporum	Fusarium oxysporum
Phytophtora infestans	Phytophtora infestans	Phytophtora infestans
Fusarium verticillioides	Fusarium verticillioides	Fusarium verticillioides
Fusarium oxysporum Iycopersici	Fusarium oxysporum	Fusarium oxysporum Iycopersici
Verticillium dahliae	Verticillium dahliae	Verticillium dahliae
Colletotrichum cereale	Colletotrichum cereale	Colletotrichum cereale
Colletotrichum graminicola	Colletotrichum graminicola	Colletotrichum graminicola
Fusarium redolens	Fusarium redolens	Fusarium redolens
Sclerotinia sclerotium	Sclerotinia sclerotium	Sclerotinia sclerotium

