







# DNA analysis, targeted and untargeted methods in metagenomics

Manuela Costanzo & Annamaria Bevivino ENEA SSPT-BIOAG-SOQUAS

November 27, 2023 Hybrid course c/o ENEA CR Casaccia Sala Blu, Via Anguillarese 301, Roma









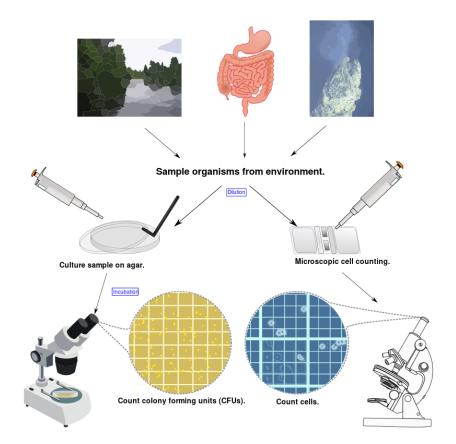


# Historical perspective of microbial diversity

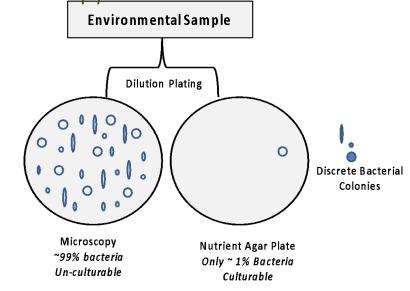


Only 1-10% of all soil bacteria are considered to be culturable

- species may be uncultivable
- some species require special conditions
- species in relatively low density








## The great plate count anomaly



The term "the great plate count anomaly" was coined by Staley and Konopka (*Ann. Rev. Microbiol. 39:321-46, 1985*) to describe the difference between the numbers of cells from natural environments that form viable colonies on agar medium and the numbers obtained by microsc<u>opy.</u>

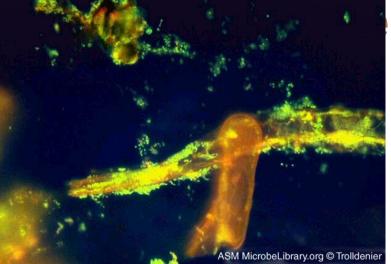


Staley and Konopka (Ann. Rev. Microbiol. 1985, 39:321-46)










# How to measure belowground biodiversity?

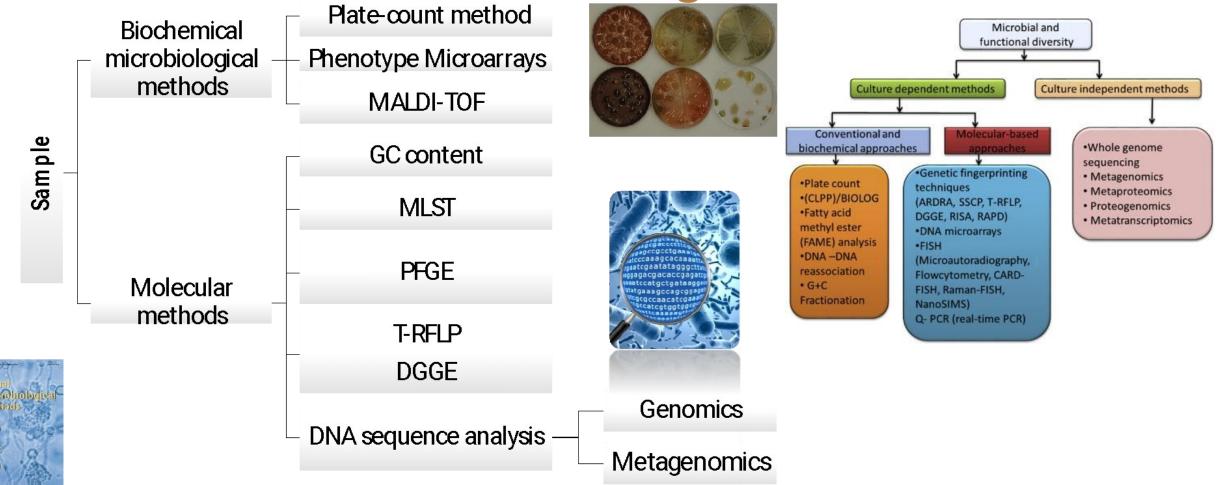


# **Does it matter if one species disappears?**
















# Methods for studying microorganisms



Kirk JL, Beaudette LA, Hart M, et al. Methods of studying soil microbial diversity. J Microbiol Methods. 2004;58(2):169-188.







**SUS-MIRRI.IT** 

#### Methods to study the belowground microbial communities

| CONTENTION AND RECEIPTION               |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |               |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
| nan an | inder der State in d<br>State in der State in                                                                                                                   | instants.<br>Alfesting second second and second second                                                          | in the second |
|                                         | ing printer and a state and                                                                                                                                                                                                                                       |                                                                                                                 |               |
|                                         |                                                                                                                                                                                                                                                                                                                                                       | Land III to the land land of the land o |               |
|                                         | date is de la de la desta d<br>Contra de la desta de la desta de la de la desta de la desta de la desta de la de la de la de la de la de la de<br>Contra de la desta de la de |                                                                                                                 |               |

Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A\*, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol. 2018 Jun 5;9:1006.









#### **Molecular methods**

|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aturationale                                                                                                                                                                                                                         | diferation.<br>Entropy of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -veer na hikite n<br>FAN                            | NOLECULAR |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------|
| incentarian and a subar<br>esta and a character<br>esta and a character<br>esta and a character<br>esta and a character |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de ste de la companie de la companie<br>Companie de la companie | ari lanaharahikarikari<br>Katikari                                                                                              | ina an in cate in the aire and<br>antitate in the cate of the<br>part sairs in the cate of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iter to zapitale. A postale<br>interviewe z postale |           |
| inde and the second s        | inite in the state of the state | o contranciane constant.<br>Si constante e constante                                                                                                                                                                                 | pite)<br>Accelerative interity and<br>tarte of the the the                                                                      | social di secolul primeri di secolul di seco | akultarati setati<br>Kalestati                      |           |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | liter activities of the second                                                                                                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fina kang kang kang kang kang kang kang ka          |           |

Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A\*, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol. 2018 Jun 5;9:1006.









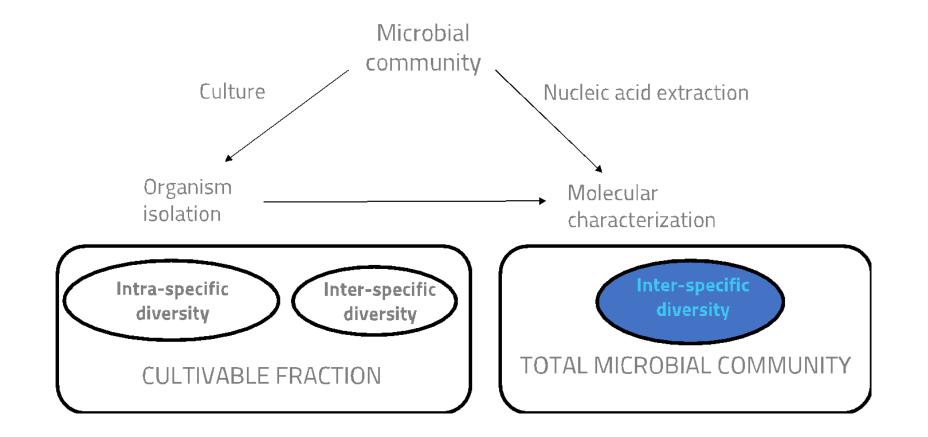
### **Molecular methods**

TABLE 1 | Continued

| Methods                                                                                             | Advantages                                                                                                     | Disadvantages                                                                                                                                                                                                                                                                                                                       | Crop examples                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Next-generation sequencing<br>(NGS)                                                                 | Rapid to assess biodiversity and abundance of<br>many species/organizational taxonomic units<br>simultaneously | Massive amount of sequencing data of DNA<br>(genomic or PCR amplified fragments) or RNA<br>error distribution within reads of a library;<br>insertions or substitution errors; relatively<br>expensive;<br>replication and statistical analysis are essential;<br>computational intensive; challenging in terms of<br>data analysis | Maritime pine ( <i>Pinus pinaster</i> )                                                                                                                                                                                                                                           |
| DNA sequence analysis of the<br>internal transcribed spacer (ITS)<br>region for mycorrhizal studies | Fast and accurate for the identification of mycorrhizal fungi and characterization of their distribution.      | Relatively expensive, especially in case of<br>metagenomic analyses                                                                                                                                                                                                                                                                 | Ectomycorrhizas of poplar ( <i>Populus nigra</i> x <i>maximowiczii</i> ) and willow clone ( <i>Salix viminalis</i> ) cultivated as SRF, mycorrhizal fungi of willow ( <i>Salix</i> spp. L.) from hydrocarbon-contaminated soils, AMF of <i>Acacia gerrardii</i> under salt stress |

A few illustrative examples of herbaceous plants are also given.

Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A\*, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol. 2018 Jun 5;9:1006.



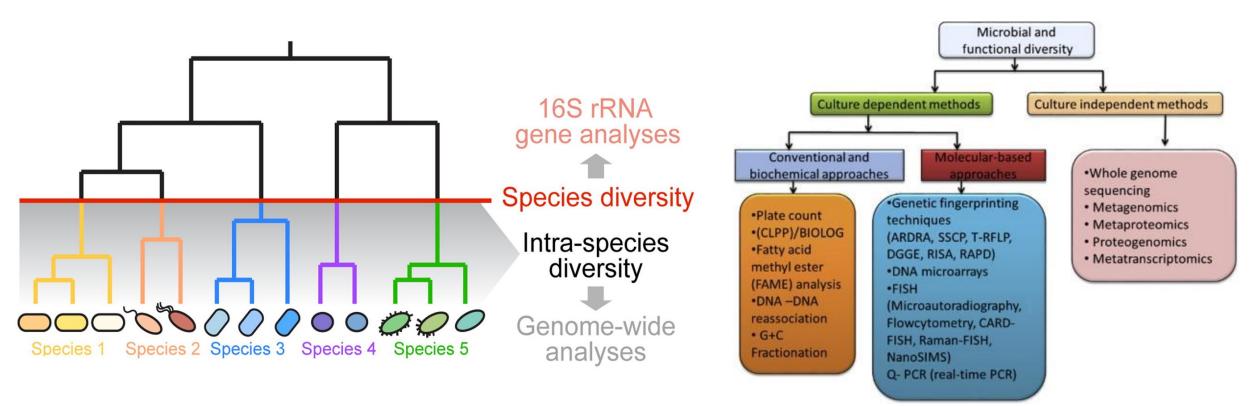







# **Approaches for assessing diversity**







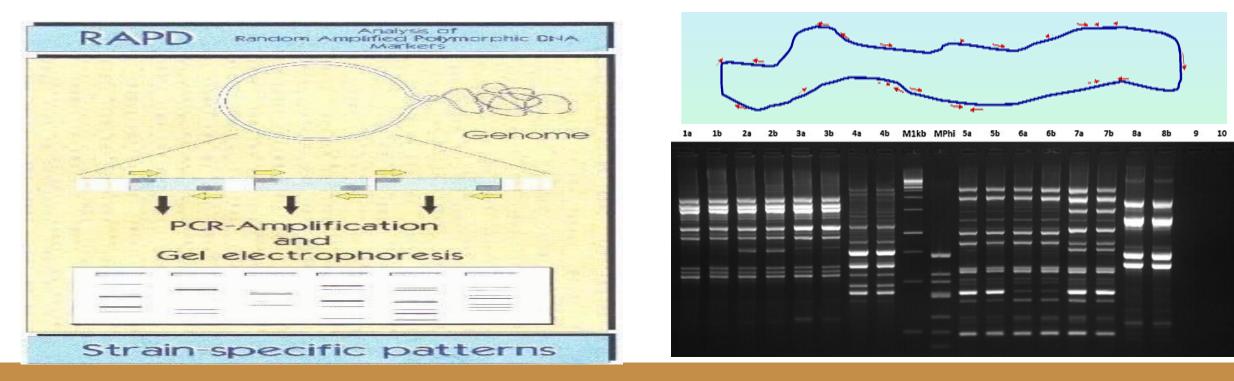





#### **DNA-based methods for biodiversity assessment**











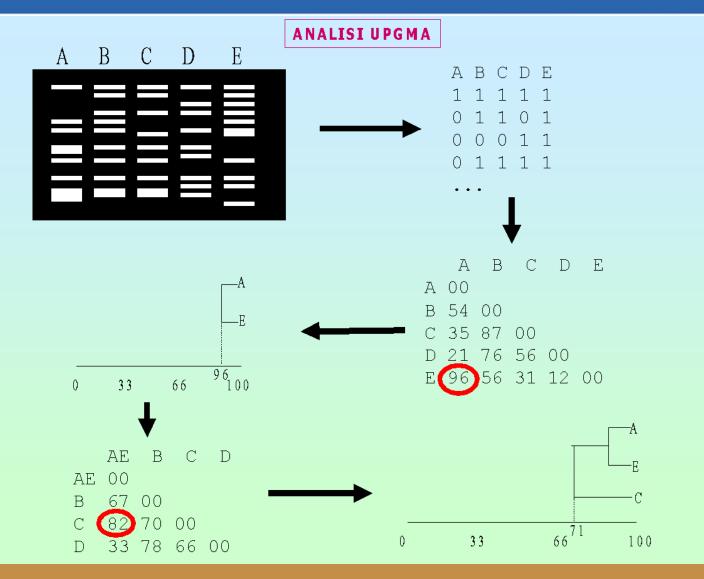

# **Typing methods: Intra-species diversity**

- Random Amplified Polymorphic DNA (RAPD) is a PCR-based technology for identification genetic variation
- It is particularly suitable for study of genetic variation at population level
- This procedure detects nucleotide sequence polymorphism in DNA












The Similarity index (SI) values between the RAPD profile of any two individuals were calculated using the Nei genetic similarity index, on the basis of the equation: SI=2Nij/(Ni+NJ)

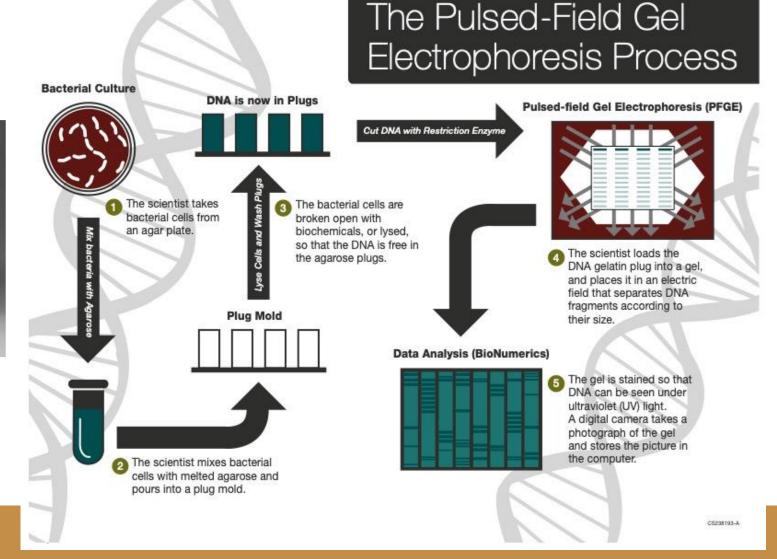
Nij is the number of common bonds shared between 2 samples I and j Ni and NJ are the total number of DNA bands for genotypes I and j, respectively.

The similarity matrix data were subjected to an unweighted pair group method for arithmetic average (UPGMA) cluster analysis to generate a dendrogram. The results were analyzed based on the principle that a band is considered to be 'polymorphic' if it is present in some individuals and absent in others, and 'Monomorphic' if present in all the individuals or accessions.








Accessible version: https://www.cdc.gov/pulsenet/pathogens/pfge.html





## Pulsed-field Gel Electrophoresis (PFGE)











h

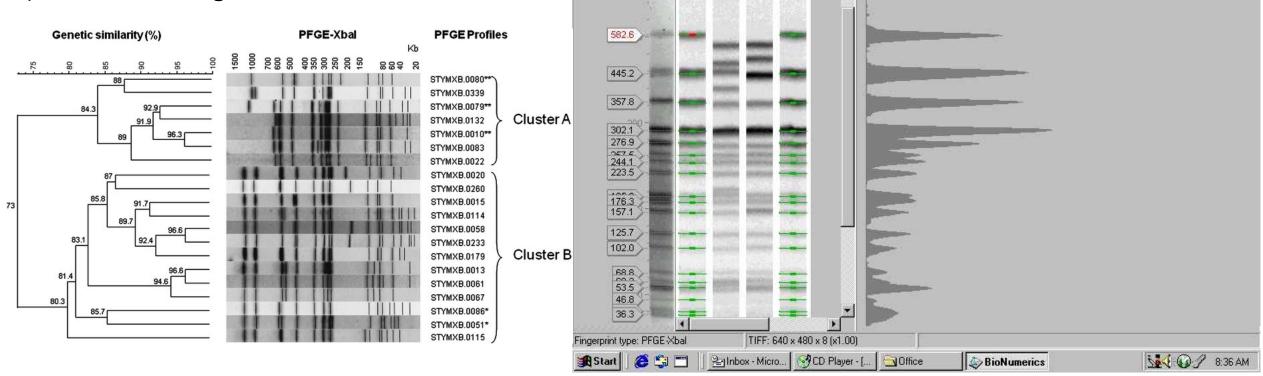
Database: J:\epi\ecoli-client

3

3. Database: J:VepiVeco Normalization File name: NE01058

2

18


A 43 0 3

Densitometric curve



- 8 ×

The software used to analyze PFGE patterns normalizes differences in gel conditions to a global reference. This allows us to compare patterns between gels.



Fingerprint data of NE01058 Edit References Normalization

471

F |

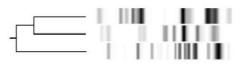
3

Ref. system

File

10110




## Analysis of strain diversity within species



Aim: Local epidemiology

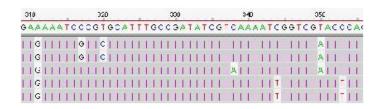
Fingerprinting methods:

- PFGE
- RAPD
- rep-PCR



Multilocus methods:

Population genetics




a sin

South America

• MLST

- MLVA-VNTR
- SNPs











## Microbial Typing: the pursuit of a common language





Policy Document

Saturday 23rd September 2017

#### DATA ANALYSIS

#### DATABASES

#### SUBMISSIONS

**NEWS** 

#### LINKS

#### NEW MLST SCHEMES IN DEVELOPMENT

Site requirements

#### Welcome to the Multi Locus Sequence Typing home page

MLST is a nucleotide sequence based approach for the unambiguous characterisation of isolates of bacteria and other organisms via the internet.

The aim of MLST is to provide a portable, accurate, and highly discriminating typing system that can be used for most bacteria and some other organisms. It is envisaged that this approach will be particularly helpful for the typing of bacterial pathogens.

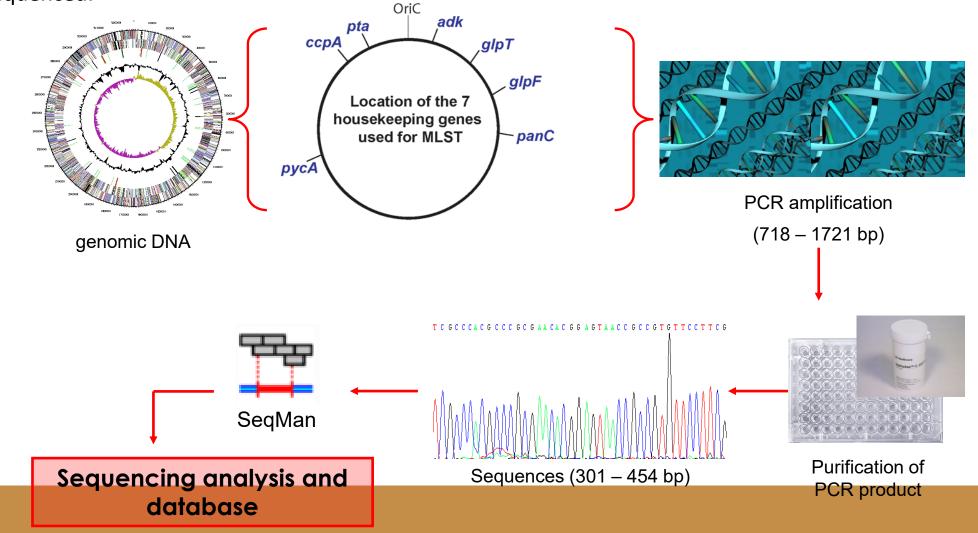
To achieve this aim we have taken the proven concepts of multilocus enzyme electrophoresis (MLEE) and have adapted them so that alleles at each locus are defined directly, by nucleotide sequencing, rather than indirectly from the electrophoretic mobility of their gene products.

MLST was developed in the laboratories of Martin Maiden, Dominique Caugant, Ian Feavers, Mark Achtman and Brian Spratt.

This site is hosted at **Imperial College** with funding from the **Wellcome Trust**. The location of the subsites for the individual species are shown on their respective front pages.

For general information please Click here or to register feedback or interest Click here

http://www.mlst.ne

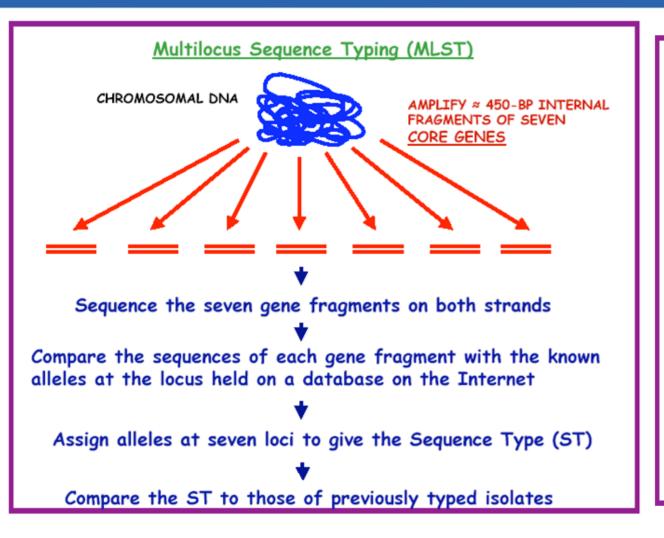


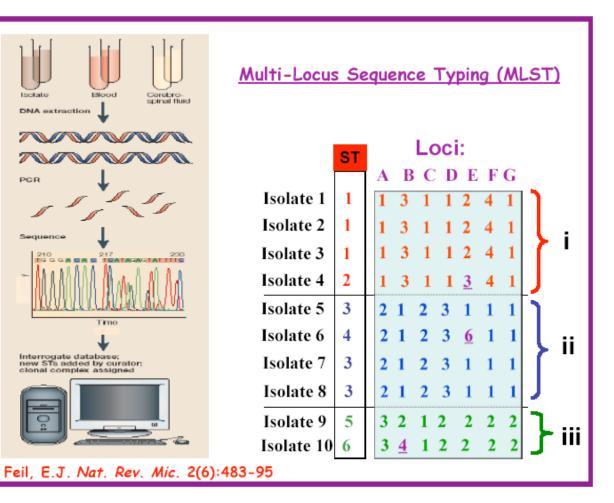


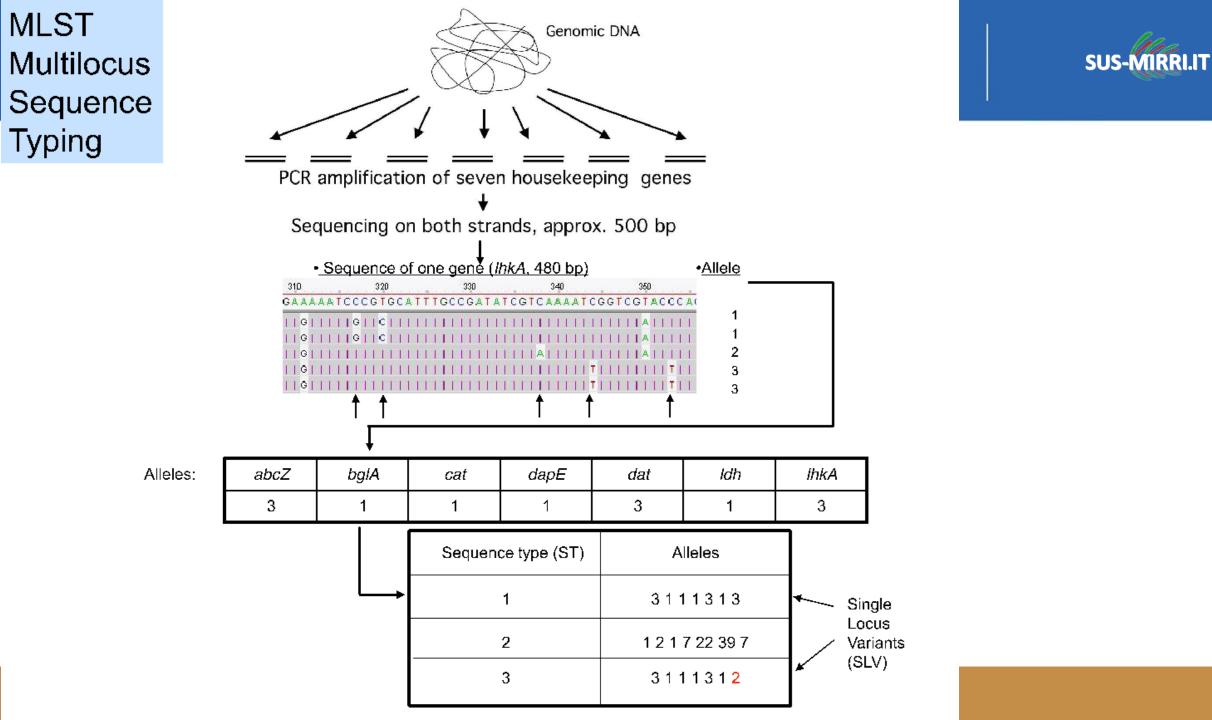





Multilocus sequence typing (MLST) is a molecular typing technique whereby a number of well chosen housekeeping genes (loci) are sequenced.









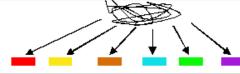






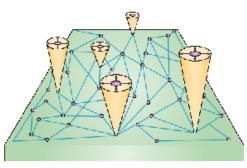

#### MLST databases: global epidemiology and population biology

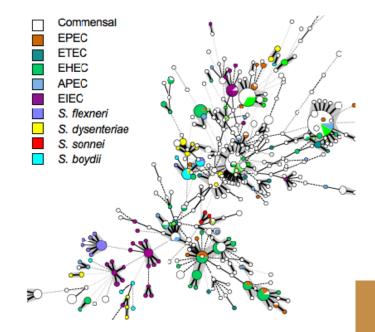
## pubmlst.org






#### Warwick databases


- Escherichia coli
- Moraxella catarrhalis
- <u>Salmonella enterica</u>
- <u>Yersinia pseudotuberculosis</u>






| ST | dinB | icdA | pabB | polB | putP | trpA | trpB | uidA |
|----|------|------|------|------|------|------|------|------|
| 1  | 1    | 1    | 2    | 1    | 1    | 2    | 3    | 1    |
| 2  | 8    | 2    | 7    | 3    | 7    | 1    | 4    | 2    |
| 3  | 3    | 8    | 5    | 11   | 8    | 3    | 5    | 3    |
| 4  | 2    | 4    | 6    | 4    | 1    | 6    | 1    | 1    |
| 5  | 5    | 3    | 3    | 10   | 5    | 8    | 2    | 5    |
| 6  | 1    | 7    | 1    | 9    | 2    | 20   | 1    | 6    |
| 7  | 6    | 6    | 4    | 2    | 6    | 7    | 2    | 4    |
| 8  | 23   | 9    | 8    | 12   | 9    | 11   | 7    | 13   |
| 9  | 9    | 20   | 15   | 7    | 4    | 9    | 6    | 9    |



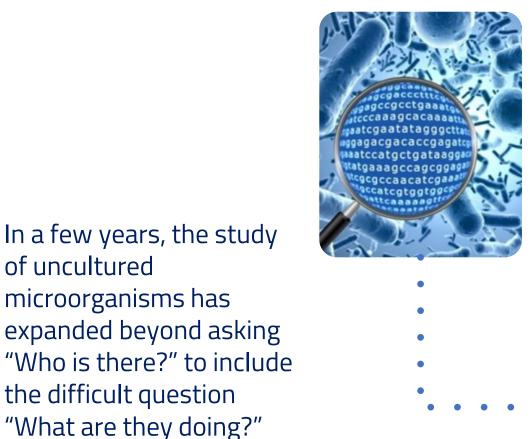




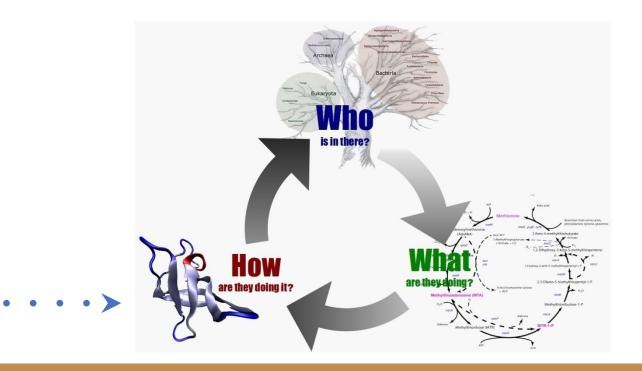
#### **US-MIRRI.IT**



of uncultured


Finanziato dall'Unione europea NextGenerationEU







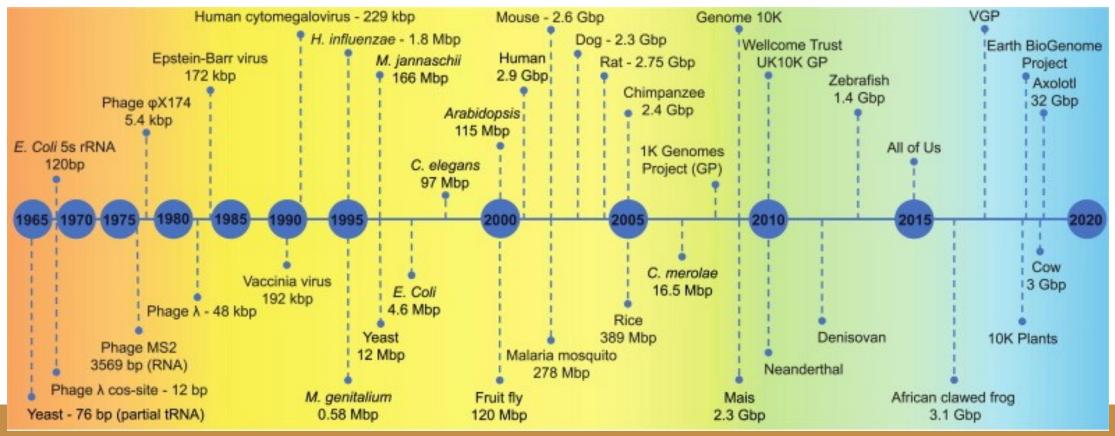

## **Culture-independent methods** •



- Access to a much larger reservoir of genomic and metabolic information
- Link community structure and diversity to function









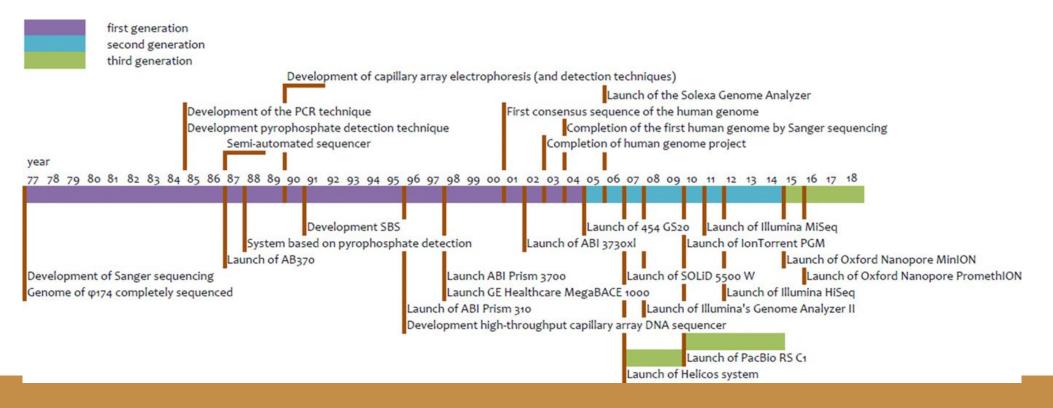



## The long walk to genomics

- Increasingly "challenging" projects
- Increasingly difficult and larger targets












#### The demand for the sequencing market is growing exponentially

- Technologies in this field are evolving very rapidly
- Today's DNA sequencing market was estimated to be approximately \$6 BILLION in 2017 and is expected to expand to \$25 BILLION by 2025











### **Cost of services vs cost of technologies**

- the cost of sequencing has been reduced in a way that no one could have predicted in the space of a few years, to the point that the goal of the \$1000 genome has already been achieved and that of the \$100 genome no longer seems like a mirage
- But how much technology is behind a new generation sequencer?

Illumina is currently the leader company in the sector

A NovaSeq sequencer that can generate a human genome in less than 48 hours for less than \$1000 has a market cost of around \$800,000!











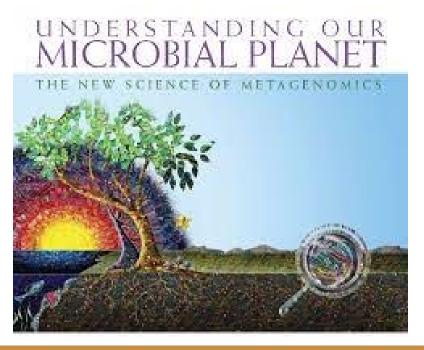
## And a large sequencing center looks something like this...



To this we add the costs relating to reagents necessary for sequencing, those necessary for hardware and data storage resources (hundreds of Tb of sequence data) and those of technical personnel...










## What is metagenomics?

Metagenomics is the study of microbial communities in their original habitats, which can give a comprehensive insight into the interactions within these communities.

Metagenomics can also help identify individual species within microbial habitats.

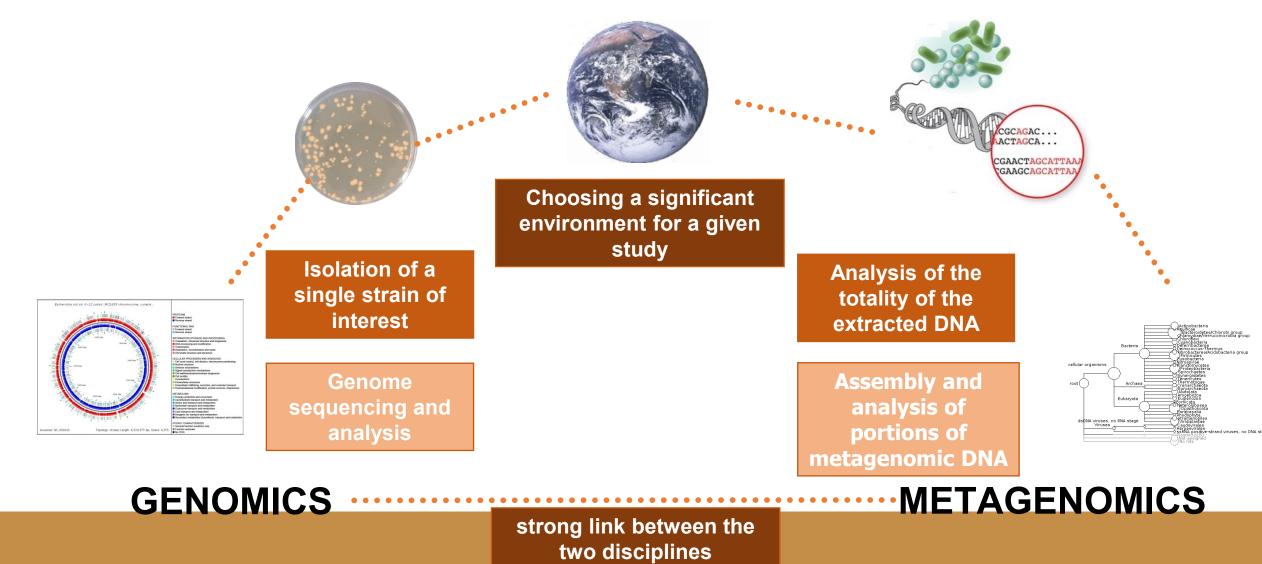


#### The branches of metagenomics

**biotechnological field** (how can some biochemical functions be exploited in research and industrial fields?)

**biomedical field** (how are alterations in the microbiome linked to the development of diseases?)

**ecological context** (how does the diversity of microbial communities contribute to the support of food chains?)







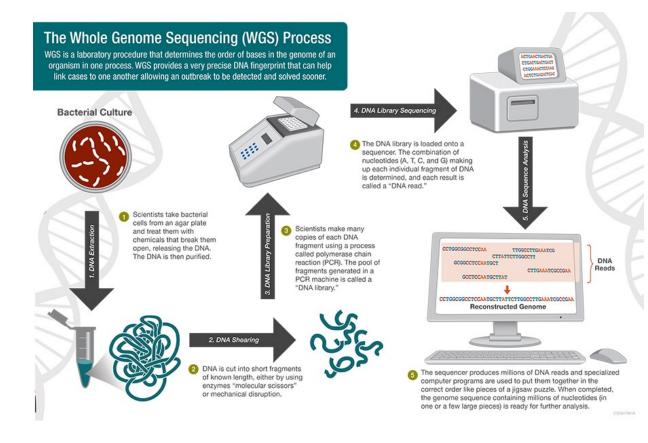



#### **Analysis strategies**









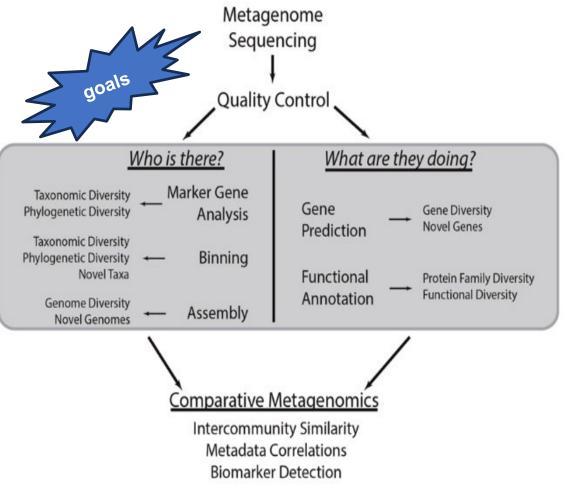



#### The Whole Genome Sequencing (WGS)

Whole-genome sequencing (WGS) is a comprehensive method for analyzing entire genomes.

While this method is commonly associated with sequencing human genomes, the scalable, flexible nature of next-generation sequencing (NGS) technology makes it equally useful for sequencing any species, such as agriculturally important diseaserelated microbes












#### The revolution of Whole metagenome shotgun sequencing



Leave these two classic approaches, moving towards a third approach based on the sequencing of the entire DNA library.

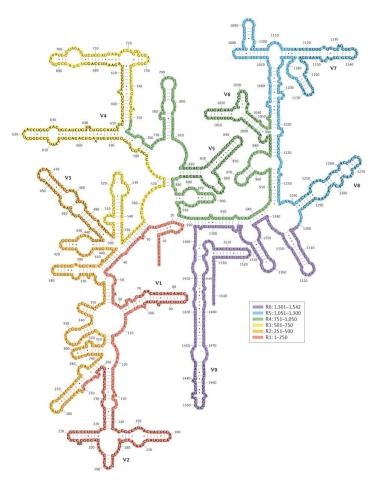
This approach is not focused on the single gene or the single genome, but examines the entire biodiversity of the microbial community.

Phylogenetic diversity between microbial components and also the level of intraspecific genetic diversity.

**Entire biochemical pathways** in a community in detail and to create real "gene collections" represented in the microbiome

Allow the reconstruction of **individual complete genomes** of one or more components







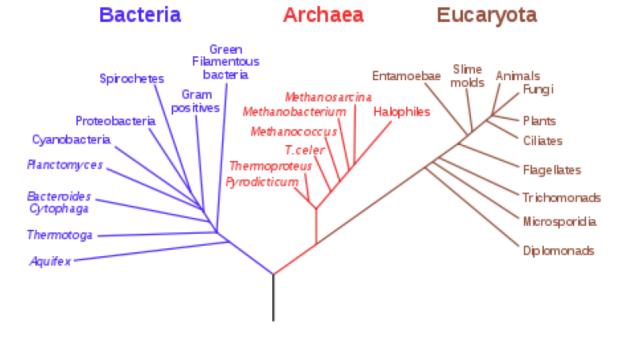



#### **Profiling of a microbial community16S rRNA: why?**

- Usually based on single marker genes
- For bacteria, the marker of choice is 16S ribosomal RNA
- For eukaryotes it is **18S ribosomal RNA**
- This is a sequence shared universally by all prokaryotes
- It presents extremely conserved regions, interspersed with highly variable regions (V1-V9)
- These can be amplified and sequenced thanks to the use of degenerate primers designed on their flanking regions
- This bypasses the need to perform a culture












## 16S rRNA: why?

- The variable regions of the 16S rRNA can be considered as "fingerprints" that allow a specific species to be uniquely identified
  - There are specific databases such as the Ribosomal Database Project, which allow comparison with over 3 million and 300 thousand already determined sequences of bacteria and Archea



Given the sharing of rRNA sequences by all cellular organisms, the phylogeny based on 16S sequencing has made it possible to redefine the tree of life based on genetic-molecular criteria and no longer just morphological ones





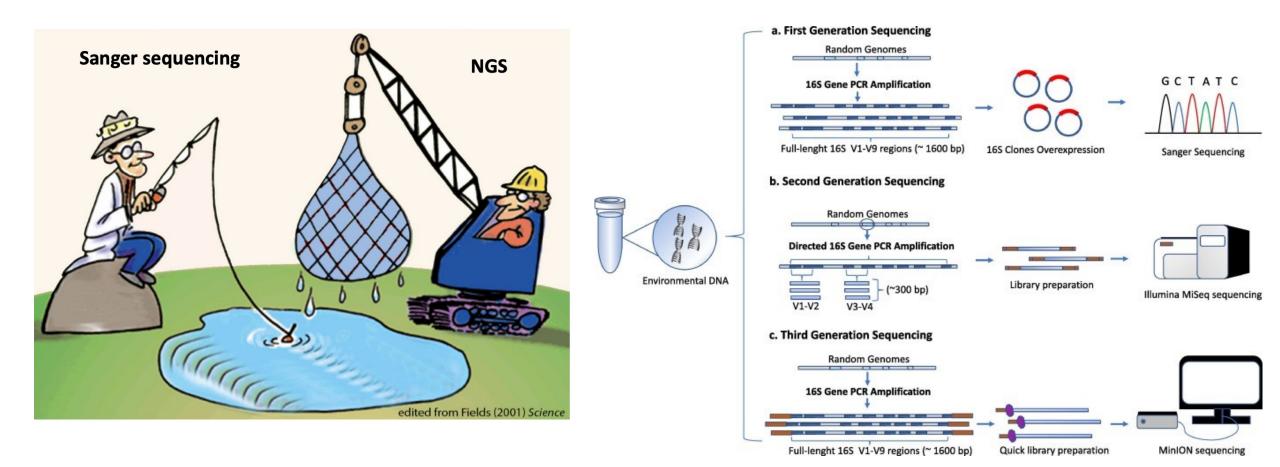




## 16S rRNA: how?

- The 9 variable regions are characterized by a different length, but also by a variable degree of diversity
- Their phylogenetic informativeness is therefore different and the length also determines the choice of the type of sequencing to be carried out (for example taking into account the length of the reads)

| Region | Position  | # b.p. |
|--------|-----------|--------|
| V1     | 69-99     | 30     |
| V2     | 137-242   | 105    |
| V3     | 338-533   | 195    |
| V4     | 576-682   | 106    |
| V5     | 822-879   | 57     |
| V6     | 967-1046  | 79     |
| V7     | 1117-1173 | 56     |
| V8     | 1243-1294 | 51     |
| V9     | 1435-1465 | 30     |





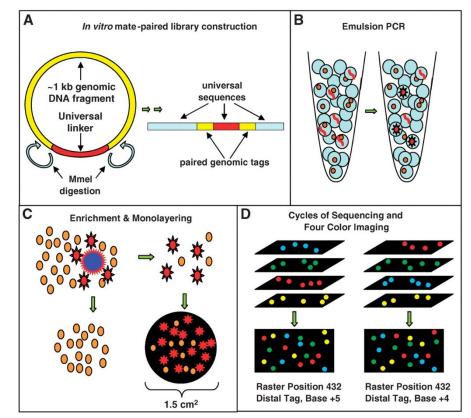





## 16S rRNA metabarcoding: the different possible approaches












## Why do we talk about «next-generation sequencing»?

- The real revolution is given by the very high throughput
- Each sequencing run can generate hundreds of millions of reads (now billions) of limited length
- The reading takes place thanks to the presence of a high resolution optical reader, which records the light signal obtained for each polony, which is physically associated with very precise coordinates of the solid support
- The times are very short and the total cost is enormously lower (cost understood as cost per sequenced base)
- Several technologies have been developed over the years... Illumina, IonTorrent (LifeTechnologies), 454 (Roche), SOLiD (Applied Biosystems), etc



|                                                                                      | iSeq 100        | MiniSeq         | MiSeq Series O          | NextSeq 550 Series O | NextSeq 1000 & 2000 |
|--------------------------------------------------------------------------------------|-----------------|-----------------|-------------------------|----------------------|---------------------|
| Popular Applications & Methods                                                       | Key Application | Key Application | Key Application         | Key Application      | Key Application     |
| Large Whole-Genome Sequencing (human, plant, animal)                                 |                 |                 |                         |                      |                     |
| Small Whole-Genome Sequencing<br>(microbe, virus)                                    | •               | •               | •                       | •                    | •                   |
| Exome & Large Panel Sequencing<br>(enrichment-based)                                 |                 |                 |                         | •                    | •                   |
| Targeted Gene Sequencing (amplicon-<br>based, gene panel)                            | ٠               | •               | •                       | •                    | •                   |
| Single-Cell Profiling (scRNA-Seq, scDNA-Seq, oligo tagging assays)                   |                 |                 |                         | •                    | •                   |
| Transcriptome Sequencing (total RNA-<br>Seq, mRNA-Seq, gene expression<br>profiling) |                 |                 |                         | •                    | •                   |
| Targeted Gene Expression Profiling                                                   | •               | •               | •                       | •                    | •                   |
| miRNA & Small RNA Analysis                                                           | •               | •               | •                       | •                    | •                   |
| DNA-Protein Interaction Analysis (ChIP-<br>Seq)                                      |                 |                 | •                       | •                    | •                   |
| Methylation Sequencing                                                               |                 |                 |                         | •                    | •                   |
| 16S Metagenomic Sequencing                                                           |                 | •               | •                       | •                    | •                   |
| Metagenomic Profiling (shotgun metagenomics, metatranscriptomics)                    |                 |                 |                         | •                    | •                   |
| Cell-Free Sequencing & Liquid Biopsy<br>Analysis                                     |                 |                 |                         | •                    | •                   |
| Run Time                                                                             | 9.5–19 hrs      | 4-24 hours      | 4-55 hours              | 12-30 hours          | 11-48 hours         |
| Maximum Output                                                                       | 1.2 Gb          | 7.5 Gb          | 15 Gb                   | 120 Gb               | 330 Gb*             |
| Maximum Reads Per Run                                                                | 4 million       | 25 million      | 25 million <sup>†</sup> | 400 million          | 1.1 billion*        |
| Maximum Read Length                                                                  | 2 × 150 bp      | 2 × 150 bp      | 2 × 300 bp              | 2 × 150 bp           | 2 × 150 bp          |

An overview of Illumina platforms – different solutions for different objectives

lia**domani** Nazionale Sa e resilienza SUS-MIRRLIT

- These are the so-called "benchtop sequencers", i.e. benchtop sequencers designed to meet the needs of small laboratories
- Not suitable for all applications
- However, note the times required to complete a run and output. You can try to compare this potential with the times and costs that were required to sequence the human genome twenty years ago...



NextSeq 550 Series 🕒

NextSeq 1000 & 2000

NovaSeq 6000

lia**domani** NAZIONALE ESA E RESILIENZA

SUS-MIRRLIT

An overview of Illumina platforms – different solutions for different objectives

- These the so-called are "production-scale" sequencers, designed for sequencing centers
- The type of possible applications is decidedly different from those seen previously
- Sequencing approaches on even large genomes
- Very high processivity

| Popular Applications & Methods                                                | Key Application | Key Application | Key Application                                                                                                                                          |
|-------------------------------------------------------------------------------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large Whole-Genome Sequencing (human, plant, animal)                          |                 |                 | •                                                                                                                                                        |
| Small Whole-Genome Sequencing (microbe, virus)                                | •               | •               | •                                                                                                                                                        |
| Exome & Large Panel Sequencing (enrichment-based)                             | •               | •               | •                                                                                                                                                        |
| Targeted Gene Sequencing (amplicon-based, gene panel)                         | •               | •               | •                                                                                                                                                        |
| Single-Cell Profiling (scRNA-Seq, scDNA-Seq, oligo tagging assays)            | •               | •               | ٠                                                                                                                                                        |
| Transcriptome Sequencing (total RNA-Seq, mRNA-Seq, gene expression profiling) | •               | •               | ٠                                                                                                                                                        |
| Chromatin Analysis (ATAC-Seq, ChIP-Seq)                                       | •               | •               | •                                                                                                                                                        |
| Methylation Sequencing                                                        | •               | •               | •                                                                                                                                                        |
| Metagenomic Profiling (shotgun metagenomics, metatranscriptomics)             | •               | •               | ٠                                                                                                                                                        |
| Cell-Free Sequencing & Liquid Biopsy Analysis                                 | •               | •               | •                                                                                                                                                        |
| Run Time                                                                      | 12–30 hours     | 11-48 hours     | ~13 - 38 hours (dual SP flow<br>cells)<br>~13-25 hours (dual S1 flow<br>cells)<br>~16-36 hours (dual S2 flow<br>cells)<br>~44 hours (dual S4 flow cells) |
| Maximum Output                                                                | 120 Gb          | 330 Gb*         | 6000 Gb                                                                                                                                                  |
| Maximum Reads Per Run                                                         | 400 million     | 1.1 billion*    | 20 billion                                                                                                                                               |
| Maximum Read Length                                                           | 2 × 150 bp      | 2 × 150 bp      | 2 x 250**                                                                                                                                                |



1.

2.

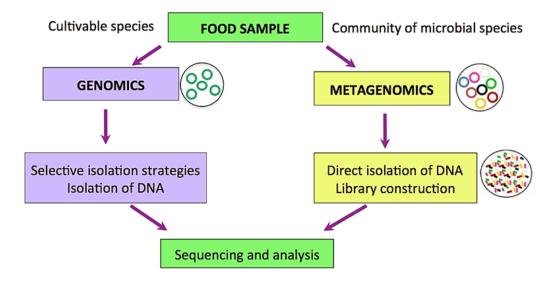
Finanziato dall'Unione europea NextGenerationEU

**Genomics advantages:** 

Sequence the genome of

one organism at a time

Use cultures to isolate


microbe of interest







#### Take home message: Genomics vs. Metagenomics



Metagenomic advantages:

- 1. Extract sequence data from microbial communities as they exist in nature
- 2. Bypass the need for culture techniques
- 3. Sequence all DNA in sample
  - 4. Select DNA based on universal sequences

**Fig. 2** Schematic representation of the differences between genomics and metagenomics.

✓The application of multi-omics in food safety and quality has the potential to answer questions traditional microbiological methods could not address.

✓ Approaching the food ecosystem from different angles allows for a "holistic" representation of which microorganisms are present, how they behave, how they interact and which are the phenotypic manifestations in this complex arena.













#### manuela.costanzo@enea.it

#### annamaria.bevivino@enea.it

