

I parametri di crescita per migliorare la produzione di composti bioattivi nelle microalghe

16/01/2024

ENEA CR PORTICI

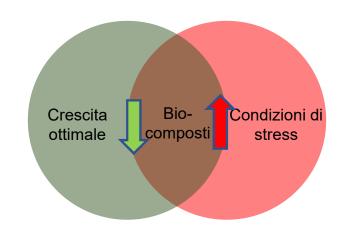
Docente: Dott.ssa Casella Patrizia

Responsabile UO11: Ing. Molino Antonio

I parametri che influiscono sulla crescita delle microalghe

- Temperatura
- Salinità
- Anidride carbonica
- Luce
- Mezzo di crescita
- Nutrienti
- pH

- Autotrofia
- Eterotrofia
- Mixotrofia



I parametri che influiscono sulla crescita delle microalghe

- Temperatura
- Salinità
- Anidride carbonica
- Luce
- Mezzo di crescita
- Nutrienti
- pH

- Autotrofia
- Eterotrofia
- Mixotrofia

Temperatura

Temperatura ottimale per la crescita delle microalghe

- La maggior parte delle specie microalgali cresce ad una temperatura ottimale compresa nell'intervallo tra 15-30 °C
- L'aumento della temperatura oltre i 38 °C diventa una condizione estrema e di stress che porta alla morte delle cellule

Microalga	Temperatura ottimale	Intervallo di temperatura
Chlorella vulgaris	30 °C	15 – 30 °C
Chlorella pyrenoidosa	38.7 °C	5.2 – 45.8 °C
Dunaliella salina	32 °C	0 – 40 °C
Dunaliella tertiolecta	32.6 °C	5 – 38.9 °C
Haematococcus pluvialis	28 °C	20 – 30 °C
Nannochloropsis oceanica	26.7 °C	0.2 – 33.3 °C
Scenedesmus sp.	26.3 °C	-3.1 – 32.7 °C
Porphyridium cruentum	19.1 °C	5.8 – 30 °C

Ras, M., Steyer, J. P., & Bernard, O. (2013). Temperature effect on microalgae: a crucial factor for outdoor production. *Reviews in Environmental Science and Bio/Technology*, *12*(2), 153-164.
Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, *1*(1), 2-11.

Effetto della variazione della temperatura sulla produzione dei carotenoidi

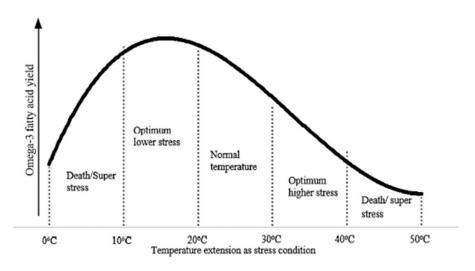
Microalga	Temperatura	Effetto
Haematococcus pluvialis	28 °C	Temperatura ottimale per la crescita della biomassa (1.8 g/L)
	23 °C	La concentrazione della biomassa è inferiore (1.4 g/L) mentre il contenuto di astaxantina non differisce tra 23 °C e 28 °C (3.5 % w/w)
Chlorella sorokiniana FZU60	28 °C	La produzione di biomassa leggermente aumenta tra 28 °C e 33 °C
	33 °C	e 38 °C.
	38 °C	La temperatura di 44 °C diventa critica con una diminuzione della crescita
	44 °C	La produzione di luteina anch'essa aumenta dai 28 ai 33 °C con un incremento maggiore tra i 28 °C ed i 33 °C

Rehman, M., Kesharvani, S., Dwivedi, G., & Suneja, K. G. (2022). Impact of cultivation conditions on microalgae biomass productivity and lipid content. Materials Today: Proceedings, 56, 282-290.

Effetto della variazione della temperatura sui lipidi

Microalga	Temperatura	Effetto
Chlorella vulgaris	25 °C	Incremento della produzione di lipidi quando la temperatura diminuisce da 30 a 25 °C
	35 °C	Decremento del 17% del tasso di crescita
	38° C	Aumento dell'acido oleico (MUFAs)
Nannochloropsis oculata	25 °C	L'aumento della temperatura da 20 a 25 °C aumenta il contenuto di lipidi da 7.9% a 14.9%
Scenedesmus quadricauda	40 °C	8.33% diminuzione della biomassa; 40% aumento dei lipidi

Rehman, M., Kesharvani, S., Dwivedi, G., & Suneja, K. G. (2022). Impact of cultivation conditions on microalgae biomass productivity and lipid content. Materials Today: Proceedings, 56, 282-290.



Effetto della variazione della temperatura sugli omega-3

Microalga	Temperatura	Effetto
Nannochloropsis	10 °C (insieme a bassa irradianza (30 µmol photons/m²/s)	Aumento del contenuto di EPA di 3.4 volte
Scenedesmus sp.	20 °C	31% lipidi. L'aumento della temperatura diminuisce gli acidi grassi polinsaturi
Phaeodactylum tricornutum	10°C	Aumento del contenuto di EPA del 85%

Perdana, B. A., Chaidir, Z., Kusnanda, A. J., Dharma, A., Zakaria, I. J., Bayu, A., & Putra, M. Y. (2021). Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Research, 60, 102542.

Rehman, M., Kesharvani, S., Dwivedi, G., & Suneja, K. G. (2022). Impact of cultivation conditions on microalgae biomass productivity and lipid content. Materials Today: Proceedings, 56, 282-290.

Salinità

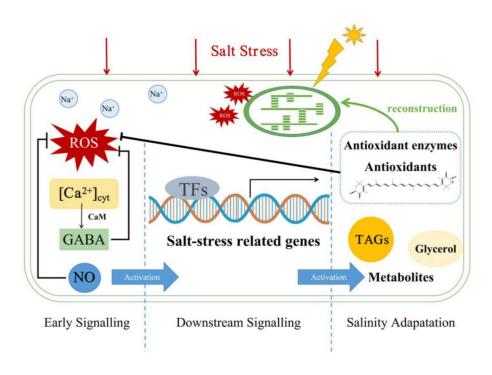
Il parametro della salinità

Si distinguono tre tipologie di microalghe:

- Marine che tollerano 35 55 ppt salinità
- Alotolleranti che tollerano 70 -120 ppt salinità
- Alofiliche che tolerano più di 150 ppt salinità

Microalga	Salinità minima (ppt)	Salinità max (ppt)	Tipologia
Dunaliella salina	35	233	Alofilica
Amphora sp.	35	129	Alotollerante
Navicula sp.	35	129	Alotollerante
Tetraselmis seucica	35	109	Marina
Tisochrysis lutea	35	75	
Phaedactylum tricornutum	35	65	
Nannochloropsis sp.	35	55	
Chaetoceros muelleri	35	55	

Ishika, T., Bahri, P. A., Laird, D. W., & Moheimani, N. R. (2018). The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. *Journal of applied phycology*, *30*, 1453-1464.



Meccanismi di risposta delle microalghe allo stress salino

- Lo stress salino innesca i primi segnali attraverso l'aumento dello ione Ca+ nel citosol che ha la funzione di messaggero secondario universale;
- Aumenta anche la presenza di specie ROS (messaggeri secondari) a causa dello stato di stress alla cellula;
- La cellula per compensare lo stress salino ed eliminare le specie ROS produce enzimi antiossidanti (catalasi e superossido desmutasi) e composti antiossidanti come i carotenoidi;
- Per mantenere l'osmoregolazione la cellula mantiene le concentrazioni interne di sodio e potassio regola la produzione di glicerolo;
- Un'altra risposta alle condizioni di stress salino è produzione di molecole chiave per la riserva cellulare di lipidi (TAG).

Ren, Y., Sun, H., Deng, J., Huang, J., & Chen, F. (2021). Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs, 19(12), 713.

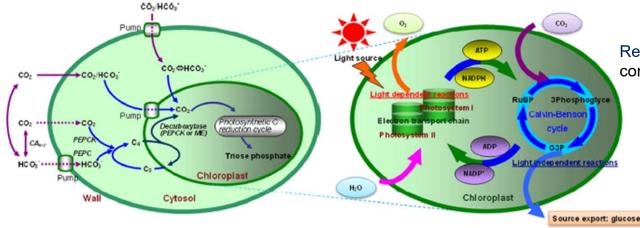
Effetti della salinità sulla produzione di carotenoidi e lipidi

Microalga	Salinità	Effetto
Haematococcus pluvialis	2 g/L NaCl + maggiore esposizione solare (250 µmol m- ² s ^{- 1})	2,2 volte maggiore il contenuto di astaxantina rispetto al controllo
Chlorella sorokiniana	NaCl (20%)	1,25 volte maggiore i contenuto di astaxantina
Scenedesmus quadricauda	160 mM NaCl	18,3% lipidi (14 % nel controllo senza NaCl)
Scenedesmus dimorphus	160 mM NaCl	31 % lipidi (26% nel controllo senza NaCl)
Chlorella sp.	160 mM NaCl	32 % lipidi (27% nel controllo senza NaCl)

Ren, Y., Sun, H., Deng, J., Huang, J., & Chen, F. (2021). Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs, 19(12), 713.

Gour, Rakesh Singh, Vijay Kumar Garlapati, and Anil Kant. "Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing." Current Microbiology 77 (2020): 779-785.

Anidride carbonica

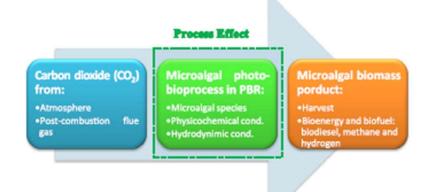


Il processo fotosintetico

Reazione dipendente dalla luce: la luce viene catturata da clorofille e carotenoidi, la sua energia viene convertita e trasportata da ATP e NADPH e viene liberato ossigeno

Reazione indipendente dalla luce: Ciclo di Calvin-Benson con la produzione di glucosio

Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31, 121-132.



Effetti dovuti alla concentrazione di CO₂

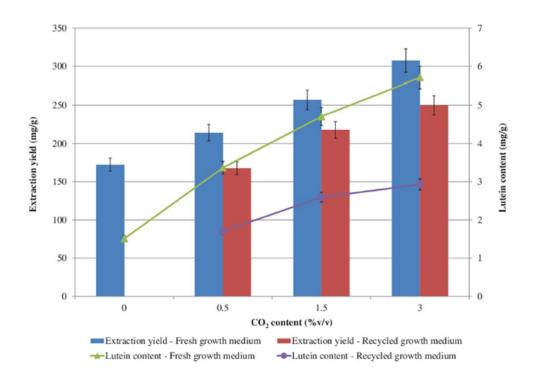
- La concentrazione della CO₂ in atmosfera è circa 0,04% v/v
- La crescita della maggior parte delle microalghe può essere negativamente influenzata da concentrazioni di CO₂ > 1% v/v
- Nonostante ciò le microalghe possono essere considerate al pari delle tecnologie di cattura della CO₂ con il vantaggio di poter sfruttare questa loro capacità per produrre bioprodotti

Concentrazione della CO₂ tollerata dalla microalghe

Microalga	Concentrazione CO2 (% v/v)	Altri parametri
Nannochloropsis sp.	15 %	Intensità luminosa 168 µmol m- ² s ⁻¹ pH 6,3 Temperatura 25 °C Coltura Batch 1 litro
Chlorella sp.	10-70%	Intensità luminosa 200 µmol m- ² s ⁻¹ pH 6,3 – 3,5 Temperatura 25 °C Coltura Batch 0,2 litro Bubble column
Chlorella vulgaris	0,04 - 30	Intensità luminosa 58,8 µmol m- ² s ⁻¹ pH 6,3 Temperatura 25 °C Coltura Batch 0,1 litro Flask

Concentrazione della CO₂ tollerata dalla microalghe

Microalga	Concentrazione CO2 (% v/v)	Lipidi (produttività) (mg/L giorno)
Scenedesmus sp.	10	Intensità luminosa 44,8 µmol m-2 s-1 pH 7,4-5,3 Temperatura 30 °C Coltura Flask 1,8 litro
Scendesmus almeriensis	3	Intensità luminosa 200 µmol m-2 s-1 pH 6 - 8 Temperatura 28 °C Coltura Batch 1,2 e 28 litro Bubble column



Effetti dovuti alla concentrazione di CO₂ sulla produzione di bioprodotti

Caso studio della microalga Scenedesmus almeriensis

- Il cui contenuto di luteina aumenta all'aumentare della concentrazione di CO₂
- La resa di estrazione più alta (307,44 mg/g) e il contenuto di luteina più elevato (5,71 mg/g) sono stati ottenuti con un contenuto di CO2 del 3,0%v/v nel terreno di crescita fresco.

Effetti dovuti alla concentrazione di CO₂ sulla produzione di bioprodotti

Microalga	Concentrazione CO ₂ (% v/v)	Contenuto carotenoidi (mg/g cellule)	Produttività dei lipidi (mg/L/giorno)
Scenedesmus sp.	10 (0,5 vvm)	7,7	61
Scendesmus sp.	20 (0,5 vvm)	20,5	26
Nannochloropsis sp.	10 (0,5 vvm)	9,2	69
Nannochloropsis sp.	20 (0,5 vvm)	44,6	46
Chlorella sp. (marina)	10 (0,5 vvm)	23	61
Chlorella sp. (marina)	20 (0,5 vvm)	47	15
Chlorella sp. (acqua dolce)	10 (0,5 vvm)	12	55
Chlorella sp. (acqua dolce)	20 (0,5 vvm)	35	24

Thawechai, Tipawan, et al. "Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies." *Bioresource Technology* 219 (2016): 139-149.

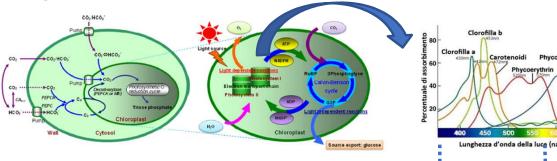
L'utilizzo della CO₂ proveniente da gas di combustione

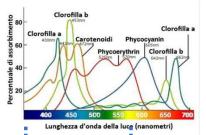
- La potenzialità di utilizzare le microalghe come tecnologia di sequestro della CO2 potrebbe essere sfruttare per utilizzare l'anidride carbonica dei gas di combustione.
- Il punto di debolezza nell'utilizzo dei gas di combustione per la crescita delle microalghe è dovuto alla presenza di sostanze inquinanti altamente tossiche per le microalghe, principalmente NOx ed Sox
- La concentrazione di SO₂ maggiore di 100 ppm è letale per la crescita delle microalghe
- Nei gas di combustione gli NOx sono costituiti dal 90-95% di NO e dal 5-10% di NO₂ con concentrazioni da 100 a 1000 ppm.

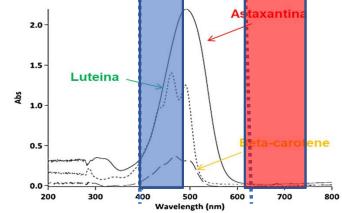
Microalga	CO ₂ %/SO ₂ (ppm)/NO(ppm)	Tasso di produzione della biomassa (g/L/giorno)	Tasso di fissazione CO ₂ (g/L/giorno)
Chlorella sp.	15/0/0	1,4	2,63
	15/60/0	0,89	1,67
	15/100/0	0,55	1,04
	15/150/0	NA	NA
Nannochlorpsis sp.	15/0/0	0,26	0,48
	15/50/0	0,24	0,46
	15/0/300	0,08	0,15

Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renewable and Sustainable Energy Reviews, 31, 121-132.

Luce






I pigmenti fotosintetici

Il processo fotosintetico

Pigments	in Organic Solvents *, nm	Representatives	
chiorophyll a	420, 660	All algae	Green algae: Chlamydomonas, Scenedesmus, Dunaliella,
chlorophyll b	435, 643	Green algae	Haematococcus
chlorophyll c	445, 625	Heterokontophyta, Haptophyta, Dinophyta, Cryptophyta	Cryptophyta: Cryptomonas, Rhodomonas
chlorophyll d	450, 690	Rhodophyta, some Cyanobacteria	
chlorophyll f	707	Some Cyanobacteria	Cyanobacteria: Spirulina
β-carotene	425, 450, 480	Most algae	
α-carotene	420, 440, 470	Some algae (Cryptophyta, Haptophyta, Dinophyta, Chrysophyceae), some Cyanobacteria	
fucoxanthin	425, 450, 475	Heterokontophyta (Bacillariophyceae Phaeophyceae, Chrysophyceae), Haptophyta	
phycoerythrin	490, 546, 576	Rhodophyta, Cryptophyto Cyanobacteria	
phycocyanin	618	Rhodophyta, Cryptophyta, Cyanobacteria	
llophycocyanin	650	Rhodophyta, Cryptophyta, Cyanobacteria	

Absorption Maxima

Concentrazione carotenoidi 10 mg/L in DMSO

Intensità luminosa ottimale

Microalga	Intensità luminose testate (µmol/m²/s)	Intensità ottimale (µmol/m²/s)
Nannochloropsis salina	5, 25, 50, 100, 250, 280	26-55
Phaeodactylum tricornutum	60, 100, 250, 500, 750	60-112
Chlorella vulgaris	50, 150, 300	150
Scendesmus obliquus	50, 150, 300	150
Isochrysis galbana	50, 125, 325	325
Dunaliella salina	200, 500, 1000, 1500	1000/1500

Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. *Biology*, 10(10), 1060.

Effetto della luce sulla produzione del betacarotene

Microalga	Condizioni di crescita	Ciclo luce/buio	Intensità massima (µmol/m²/s)	Biomassa g/L (su secco)	Beta-carotene (% su peso secco)	Resa betacarotene (mg/l)
Dunaliella salina	PBR a pannello 25 °C	14/10 (6:00 alle 20:00)	600	0,5	2 (6 giorni)	10
	Illuminazione LED Giorni coltivazione	14/10	1320	1.2	6,5 (5 giorni)	58
	6	14/10	1000	1,0	4,5 (5 giorni)	35
		14/10	2000	1,3	8,0 (5 giorni)	70
	-	24	336	0,9	3,7 (3 giorni)	30
		24	770	1,3	6,5 (3 giorni)	60

Xi, Y., Wang, J., Chu, Y., Chi, Z., & Xue, S. (2020). Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation. *Algal Research*, 52, 102111.

Effetto della qualità ed intensità sulla produzione di astaxantina

Microalga	Condizioni di crescita	Rapporto % luce rossa:blu	Biomassa g/L (su secco)	Astaxantina (mg/g)	Produttività (mg/l/giorno)
Haematococcus pluvialis	PBR cilindrico 1 L 21 °C	100% rossa	0,35 fase verde > 2 g/l fase rossa	21,5	5
	CO ₂ 10% Intensità luminosa	75/25	0,27 fase verde 1,75 g/l fase rossa	27	9
	100 µmol/fotone/m²/s FASE VERDE	50/50	0,27 fase verde 1,75 g/l fase rossa	27	9
	300 µmol/fotone/m²/s	25/75	0,27 fase verde 1,75 g/l fase rossa	27	9
	FASE ROSSA	100% blu	0,22 fase verde 2 g/l fase rossa	25	7,5
	Illuminazione LED luce blu (450 nm)				

Giorni coltivazione 7

LED luce rossa (660 nm)

Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. *Algal Research*, 51, 102027.

Effetto dell'intensità e della frequenza sulla produzione di lipidi

Microalga	Intensità luminosa (µmol/m²/s)	Biomassa g/L (su secco)	Lipidi (% su peso secco)
Chlorella sp.	40	2,2	23
	200	3	29
	400	2,5	33

Microalga	Frequenza	Lipidi (% su peso secco)
Chlorella sp.	Rossa	13,1
	Gialla	12,7
	Verde	7,2

· Il mezzo di crescita

Mezzi di crescita

	50		
Compositions	Basal medium	Modified Bristol's medium (CZ-M1)	MBL medium (g/l)
	(g/l)	(g/l)	(81-7
Medium type	Nitrogen	Nitrogen rich	Nitrogen poor
	rich		
	Nutrient	Nutrient poor	Nutrient poor
	rich		
NaCl		0.025	
CaCl ₂ ·2H ₂ O	0.1106	0.025	0.0368
NaNO ₃		0.75	0.085
KNO ₃	1.25		
MgSO ₄ ·7H ₂ O	1	0.075	0.037
NaHCO ₃			0.0126
K ₂ HPO ₄		0.075	0.0087
KH ₂ PO ₄	1.25	0.175	
Na ₂ O ₃ Si·9H ₂ O			0.0284
FeSO ₄ ·7H ₂ O	0.0498		
FeCl ₃ ⋅6H ₂ O		0.005	0.00315
EDTA-2Na	0.5		0.00436
H_3BO_3	0.1142	0.000061	0.001
MnCl ₂ ·4H ₂ O	0.0144		0.00018
MnSO ₄ ·7H ₂ O		0.000169	
ZnSO ₄ ·7H ₂ O	0.0882	0.000287	0.000022
Na ₂ MoO ₄ ·2H ₂ O	0.0119		0.000006
$(NH_4)_6Mo_7O_{24}\cdot 7H_2O$		0.00000124	
CuSO ₄ ·5H ₂ O	0.0157	0.0000025	0.00001
$Co(NO_3)_2 \cdot 6H_2O$	0.0049		
CoCl ₂ ·6H ₂ O			0.00001

Chemical component	CZ-M1	SE	BG-11	BBM
NaNO ₃	750 mg	250 mg	1.5 g	250 mg
MgSO ₄ ·7H ₂ O	75 mg	75 mg	75 mg	75 mg
CaCl ₂ ·H ₂ O	25 mg	25 mg	36 mg	25 mg
NaC1	25 mg	25 mg	-	25 mg
K ₂ HPO ₄ ·3H ₂ O	75 mg	75 mg	40 mg	-
KH ₂ PO ₄	175 mg	175 mg	_	175 mg
Na ₂ EDTA	_	0.2 mg	1 mg	0.75 mg
FeCl ₃ ·6H ₂ O	5 mg	0.5 mg	-	9.7 μg
MnSO ₄ ·H ₂ O	0.17 mg	-	-	5.
FeSO ₄ ·7H ₂ O	69.5 µg	_	7 <u></u>	_
(NH ₄) ₆ Mo ₇ O ₄	12.35 μg	_	-	-
H_3BO_3	61 µg	2.86 mg	2.86 mg	-
CuSO ₄ ·5H ₂ O	2.5 µg	80 µg	79 µg	-
ZnSO ₄ ·7H ₂ O	287 μg	0.22 mg	222 µg	5 μg
MnCl ₂ ·4H ₂ O	_	1.86 mg	1.81 mg	41 µg
Co (NO ₃) ₂ ·6H ₂ O	-	50 μg	49 μg	2 μg
Na ₂ MoO ₄	-	0. 39 mg	0.39 mg	4 μg
Na ₂ CO ₃	-	-	20 mg	_
Citric acid	_	3 — 3	6 mg	-
Ferric ammonium citrate	-		6 mg	-
Vitamin B ₁	a—a	10-Tab	-	1 mg
Biotin	-	-	-	0.25 μg
Vitamin B ₁₂	_	_	-	0.15 μg
Total volume	1 L	1 L	1 L	1 L

Tutti i mezzi di coltivazione contengono:

- Fonte di nitrato (NaNO₃)
- Altri macronutrienti come fosfato di potassio (mono e dibasico), solfato (solfato di magnesio, solfato di rame, solfato di zinco), cloruro di calcio, carbonato di calcio
- Micronutrienti: sodio molibdato, acido borico,
- Vitamine (B12, biotina)

Effetto del mezzo di crescita

Microalga	Mezzo di crescita			
H. pluvialis	BG-11	ВВМ	SE	CZ-M1
Concentrazione biomassa	0.5 g/l	0.4 g/l	0.4 g/l	0.8 g/l
Concentrazione (astaxantina)	12 mg/l	8 mg/l	8 mg/l	6 mg/l

La maggiore concentrazione di astaxantina è stata ottenuta utilizzando il BG11

Zhao, Y., Yue, C., Geng, S., Ning, D., Ma, T., & Yu, X. (2019). Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess and biosystems engineering, 42, 593-602.

Microalga	Mezzo di crescita		
S. almeriensis	Bioprocess	Mann & Myers'	Hemmerick
Produttività biomassa g/l/ giorno	0.55 g/l	0.5 g/l	0.25 g/l

Sánchez, J. F., Fernández, J. M., Acién, F. G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. *Process Biochemistry*, *43*(4), 398-405.

Effetto del mezzo di crescita

Microalga	Mezzo di crescita		
Dunaliella salina	Conway	F/2	Johnson
Concentrazione biomassa	0.25 g/l	0.19 g/l	0.16 g/l
Proteine (% su peso secco)	23.4	19	38.3
Lipidi (% peso secco)	31	43	29
Carboidrati (% su peso secco)	5.6	6.9	11.3
Concentrazione (carotenoidi)	2.5 µg/l	1.5 μg/l	1.5 µg/l

La coltivazione di cellule di *D. salina* con i terreni F/2, Conway e Johnson ha mostrato differenze nella crescita e nelle caratteristiche biochimiche.

Il contenuto di proteine (38,3%) e di carboidrati totali (11,3%) è stato notevolmente migliorato con il mezzo di crescita Johnson.

una maggiore produzione di lipidi (43,4%) è stata ottenuta usando il mezzo Conway

Il terreno di coltura Conway ha mostrato una produzione di luteina pari a 2,60 mg/g ed ha consentito una crescita più rapida delle cellule.

Colusse, G. A., Mendes, C. R. B., Duarte, M. E. R., de Carvalho, J. C., & Noseda, M. D. (2020). Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnology Reports, 27, e00508.

Effetto trofico sulla produttività dei lipidi

Condizioni di coltivazione	Fonte di energia	Fonte di carbonio
Fototrofiche	Luce	Inorganico (CO ₂ , NaHCO ₃)
Eterotorofiche	Organico	Glucosio
Fotoeterotrofiche	Luce	Glucosio
Mixotrofiche	Luce e carbonio organico	CO ₂ e glucosio

Microalga	Condizione trofica	Biomassa produttività g/L/giorno	Lipidi produttività g/L/giorno
A. platensis	Fotoautotrofico	0,86	0,33
	Eterotrofico	4,3	2,7
	Mixotrofico	7,2	5,6
Nannochloropsis sp.	Fotoautotrofico	0,7	0,2
	Eterotrofico	2,2	1,4
	Mixotrofico	6,0	3,5

Verma, R., Kumari, K. K., Srivastava, A., & Kumar, A. (2020). Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. *Journal of Environmental Chemical Engineering*, 8(5), 104149.

· Effetto dei nutrienti

I principali nutrienti per la produzione della biomassa microalgale

- Azoto
- Fosforo

Azoto e fosforo

- L'azoto (N) è un elemento essenziale per tutte le microalghe, essendo un componente delle macromolecole cellulari più abbondanti come proteine ed acidi nucleici.
- Può essere fornito sotto forma di nitrati, nitriti, ione ammonio ed organici come l'urea.
- Non tutte le microalghe sono in grado di utilizzare ogni forma di N
- La fonte di N più utilizzata per le colture microalgali è il nitrato con un uso più limitato del nitrito che può essere tossico ad alte concentrazioni
- Il fosforo (P) è un macronutriente essenziale per la crescita normale di tutte le alghe in quanto è un componente di importanza cruciale per la biosintesi degli acidi nucleici e dei fosfolipidi, per la modifica della funzione delle proteine e per il trasferimento di energia
- La biomassa algale contiene solitamente meno dell'1% di P.
- La forma principale in cui le alghe acquisiscono il P è il fosfato inorganico sotto forma di H₂PO⁴⁻ o HPO₄²⁻. Il trasporto di PO₄³⁻ nella cellula microalgale è un processo che richiede energia. In condizioni di ricchezza di fosforo le microalghe formano grandi granuli di polifosfato che servono come deposito interno di P e vengono metabolizzati in condizioni di P-deprivazione.

Descrizione Azoto (NO ₃ o NH ₄ ⁺)	N g/L
Azoto contenuto completo	> 0.4
Moderato contenuto di azoto	0.4 – 0.2
Moderata limitazione	0.2 – 0.1
Forte limitazione di azoto	< 0.1
Senza azoto	0

Descrizione fosforo (PO ₄ -)	P g/L
P contenuto completo	> 0.2
Moderato contenuto P	0.2 - 0.02
Moderata limitazione	0.02 – 0.01
Forte limitazione di P	< 0.01
Senza P	0

Maltsev, Y., Kulikovskiy, M., & Maltseva, S. (2023). Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microbial Cell Factories, 22(1), 239.

Effetto della privazione di azoto sulla produzione di carotenoidi

Microalga	Condizioni di crescita	Fonte di azoto	Concentrazione biomassa	Carotenoide	Lipidi	Altri composti
Haematococc us pluvialis ¹	Flask 26 °C 300 µmol fotone/m²/s Giorni di crescita: 40	NaNO ₃ 0.9 g/l CaCO ₃ 0.05 mg/l	Presenza azoto: 2 g/l Assenza azoto: 0.25 g/L	Astaxantina Presenza azoto (A): 0.6 µg/cellula Assenza azoto (N-A): 1.5 µg/cellula	Presenza azoto: 24 µg/cellula Assenza azoto: 24 µg/cellula	Proteine A: 7 µg/cellula N-A: 3 µg/cellula Carboidrati A: 5 µg/cellula N-A: 4 µg/cellula
Dunaliella salina ²	Flask 25 °C 60 µmol fotone/m²/s Giorni di crescita: 22	Azoto 1 g/l	Presenza azoto: 0.85 g/l Assenza azoto: 0.55 g/L	Beta-carotene Presenza azoto (A): 7 mg/g Assenza azoto (N-A): 14 mg/g	Presenza azoto: 24 % Assenza azoto: 39%	Proteine A: 45% N-A: 21% Carboidrati A: 20% N-A: 31%

1) Zarei, Z., & Zamani, H. (2023). Biorefinery potential of Microalga Haematococcus pluvialis to produce astaxanthin and Biodiesel under Nitrogen Deprivation. BioEnergy Research, 16(3), 1777-1788.

Effetto della privazione di azoto sulla produzione dei lipidi

Microalga	Fonte di azoto	Contenuto di lipidi (azoto sufficiente)	Contenuto di lipidi (assenza di azoto)
Nannochloropsis sp.	KNO ₃ 0.45 g/l	29%	56%
Scenedesmus obliquus	KNO ₃ 0.1%	21%	46%
Chlorella vulgaris	KNO ₃ 0.1%	23%	58%
Botryococcus braunii	KNO ₃	39%	61%

Effetto della privazione di azoto sulla produzione EPA e DHA

Microalga	Condizioni di coltivazione	Fonte di azoto	Concentrazione biomassa	lipidi	Altri composti
Nannochloropsis oceanica ¹	Bubble column 1L 25°C 2% CO ₂ v/v Illuminazione continua 700 µmol/m²/s	KNO ₃ 1.5 g/l	Presenza azoto: 5.5 g/l Assenza azoto: 6 g/l	Presenza azoto: 22.5 % TFA Assenza azoto: 32.5 % TFA	EPA Presenza azoto: 17 % su totale acidi grassi Assenza azoto: 8% su totale acidi grassi
Isochrysis sp.²	Flask 20°C NO CO ₂ Illuminazione 16:8 h 18.85 µmol/m²/s	NaNO ₃ 100g/L NaH ₂ PO ₄ ·2H ₂ O 20 g/L	Presenza azoto: 220 mg/l Assenza azoto: 100 g/l	Presenza azoto: 40 % Assenza azoto: 65 %	EPA Presenza azoto: 16.34 mg/g biomassa Assenza azoto: 18.41 mg/g DHA Presenza azoto: 0.28 mg/g Assenza azoto: 0.40 mg/g

¹⁾ Solovchenko, A., Lukyanov, A., Solovchenko, O., Didi-Cohen, S., Boussiba, S., & Khozin-Goldberg, I. (2014). Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804. European Journal of Lipid Science and Technology, 116(5), 635-644.

²⁾ Jeyakumar, B., Asha, D., Varalakshmi, P., & Kathiresan, S. (2020). Nitrogen repletion favors cellular metabolism and improves eicosapentaenoic acid production in the marine microalga Isochrysis sp. CASA CC 101. Algal Research, 47, 101877.

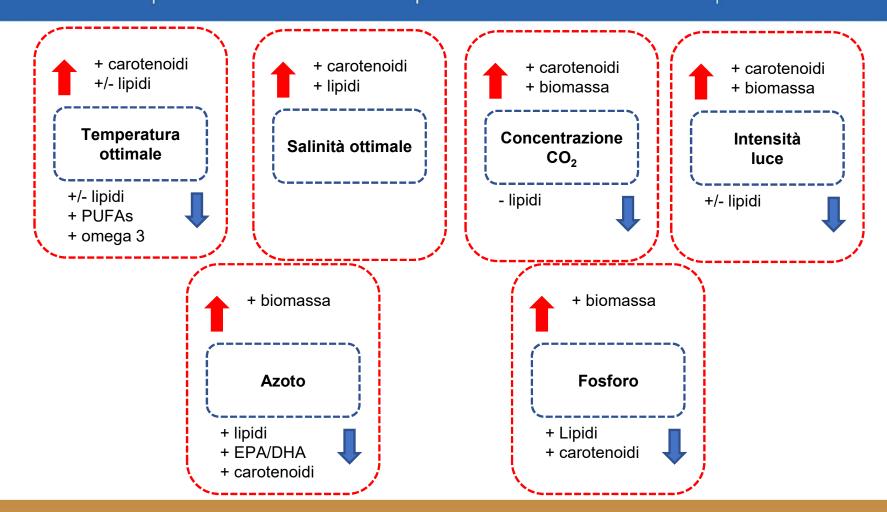
Effetto della privazione di fosforo

Microalga	Condizioni di coltivazione	Fonte di fosforo	carotenoidi
Chlorella vulgaris	1L 25°C 2% CO ₂ v/v Illuminazione 12:12 125 μmol/m²/s	0,05 mM	Presenza P 3,8 mg/g Assenza P: 0,9 mg/g
Phaeodactylum tricornutum			Presenza P 7,8 mg/g Assenza P: 2,7 mg/g
Tetraselmis suecica			Presenza P 2,5mg/g Assenza P: 1,3 mg/g

Goiris, K., Van Colen, W., Wilches, I., León-Tamariz, F., De Cooman, L., & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7, 51-57.

Effetto della privazione di fosforo

Microalga	Condizioni di coltivazione	Fonte di fosforo	carotenoidi	Lipidi
Tetraselmis marina	15 L 26°C 60 μmol/m²/s	Controllo N (0.88 mM), P (0.42 mM)	Controllo 40.3 mg/g Assenza P: 65mg/g	Controllo 20% Assenza P: 40%


Moussa, I. D. B., Chtourou, H., Karray, F., Sayadi, S., & Dhouib, A. (2017). Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. *Bioresource technology*, 238, 325-332.

Grazie per l'attenzione

Organizzatore e Responsabile dell'unità operativa UO11: Ing. Antonio Molino

Responsabile del laboratorio PROBIO: Dott. Roberto Balducchi

Coordinatore delle attività Responsabile ENEA per il progetto PNRR SUS-MIRRI.IT: Dott.ssa Annamaria Bevivino

Docente e curatore della collezione della UO11: Dott.ssa Patrizia Casella