Coppola F.; Fratianni F.; Bianco V.; Wang Z.; Pellegrini M.; Coppola R.; Nazzaro F. 2025 New Methodologies as Opportunities in the Study of Bacterial Biofilms, Including Food-Related Applications. Microorganisms 13, 1062. https://www.mdpi.com/2076-2607/13/5/1062
Abstract
Traditional food technologies, while essential, often face limitations in sensitivity, real-time detection, and adaptability to complex biological systems such as microbial biofilms. These constraints have created a growing demand for more advanced, precise, and non-invasive tools to ensure food safety and quality. In response to these challenges, cross-disciplinary technological integration has opened new opportunities for the food industry and public health, leveraging methods originally developed in other scientific fields. Although their industrial-scale implementation is still evolving, their application in research and pilot settings has already significantly improved our ability to detect and control biofilms, thereby strengthening food safety protocols. Advanced analytical techniques, the identification of pathogenic species and their virulence markers, and the screening of “natural” antimicrobial compounds can now be conceptualized as interconnected elements within a virtual framework centered on “food” and “biofilm”. In this short review, starting from the basic concepts of biofilm and associated microorganisms, we highlight a selection of emerging analytical approaches—from optical methods, microfluidics, Atomic Force Microscopy (AFM), and biospeckle techniques to molecular strategies like CRISPR, qPCR, and NGS, and the use of organoids. Initially conceived for biomedical and biotechnological applications, these tools have recently demonstrated their value in food science by enhancing our understanding of biofilm behavior and supporting the discovery of novel anti-biofilm strategies.
Read more at: https://www.mdpi.com/2076-2607/13/5/1062